
Solarbrief

2 • 2025

Schutzgebühr: 8€ Mitglieder: kostenfrei Jahresabo: 24€

Schwerpunkt:

Solarstrom smart speichern

— 22

Smarte Ladestrategien machen Heimspeicher netzdienlich

Infos über intelligente Batterieladestrategien von Dr. Johannes Weniger

— 24

Wenn E-Auto-Batterien die Netze entlasten: Status Quo zum bidirektionalen Laden

Ein Interview mit Batterie-Experte Marcus Fendt _ 5

Update Balkonspeicher: wann und wie sind sie sinnvoll

SFV-Einschätzung zu Balkonsolar und Batteriespeicher

— 06

Katherina Reiches Generalangriff auf den Klimaschutz

- Rüdiger Haude
- 09

Hohe Netzrenditen – fehlende Investitionen für die Energiewende

— Susanne Jung

— 12

Speicher, Wind und Sonnenstrom ...

- Susanne Jung
- 16

Erneuerbarer Strom, 24/7 und 365 Tage im Jahr

- Susanne Jung
- **18**

Wie kriegen wir Strom in die Dunkelflaute?

- SFV Redaktion
- **—** 20

8 Vorurteile gegen Batteriespeicher

- Tobias Otto, Susanne Jung, Taalke Wolf
- **22**

Wie smarte Ladestrategien die Netze entlasten und die Batterielebensdauer verlängern

- Dr. Ing. Johannes Weniger
- **24**

Wenn E-Auto-Batterien die Netze entlasten: Status Quo zum bidirektionalen Laden

- Marcus Fendt
- **28**

5 Fragen zu nachhaltigeren Batteriespeichern

 Interview mit Dr. Nils Reiners und Dr. Jens Peters — 32

Schleppende, komplexe Rechtsregeln für Stromspeicher

- Dr. Christina Bönning-Huber
- -36

Quartierspeicher-Projekt in Bergneustadt vor einer Weggabelung

- Jonas Quernheim
- **—** 38

Durch Winter und Sommer mit Speicherenergie: Zukunft der Energiewende im Berliner Dockyard

- Michael Viernickel & Fabian Eichelbaum
- **42**

CCS vs CDR: Wie wir das CO₂ aus der Atmosphäre holen

— Caroline Kray

bBeratung

Verein

 47
 Stromspeicher – Basics und häufig gestellte Fragen zur Anwendung

— Tobias Otto

— 52

Sparen mit dynamischen Stromtarifen: Ein Erfahrungsbericht aus 2024

— Andreas Ampferl

-56

5 Fragen zu Energie-Managementsystemen

— Taalke Wolf

— 58

Sonne in der Wohnung einfangen – Updates zu Balkonspeichern und wann sie sinnvoll sind

— Tobias Otto

– 62

Aktuelles & Solartagung

— Caroline Kray

— 64

Neues von den Infostellen

— 66

Übersicht: Aktuelle Termine beim SFV

— 67

Ausblick nächster Solarbrief: Schwerpunkt Ü20 Anlagen

Solarstrom smart speichern?

Ganz so einfach wie in unserem Titelbild funktioniert es natürlich nicht ... aber wir dürfen größer und fortschrittlich denken! Die Speichertechnologien sind in den letzten Jahren raffinierter geworden, es wird nach wie vor viel geforscht und Batteriespeicher sind so günstig geworden, dass sie für viele PV-Haushalte rentabel sind. Über den Heimspeicher hinaus, nehmen wir in diesem Solarbrief die Rolle von verschiedenen Stromspeichertechnologien für die Energiewende in den Blick, zeigen Perspektiven auf und thematisieren systematische, sowie technische Lücken.

Neue Meilensteine bei Klimaklage 2.0!

Alle Infos zur Klage: www.sfv.de/klimaklage-2-0

1000 Dank an euch – Ohne eure Spenden, gäbs keine Klimaklage!

Bislang wurden wir auf dem Weg zu mehr Klimagerechtigkeit nie im Stich gelassen, und wir sind unglaublich dankbar für die großartige Unterstützung, die wir bislang von allen Spenderinnen und Spendern erhalten haben!

Klimaklagen sind leider sehr teuer: lange Klageschriften, Gutachten, die Öffentlichkeitsarbeit... Als nächstes müssen die Stellungnahmen der Bundesregierung bewertet und Vorbereitungen für eine mögliche öffentliche Verhandlung vor dem Bundesverfassungsgericht getroffen werden.

Daher bitten wir weiterhin um Eure Mithilfe! Alle Infos zur Klage, Mitmachen und Spenden gibt es hier:

www.sfv.de/klimaklage-2-0

Update:

15.08.2025: Bundesverfassungsgericht fordert Stellungnahmen ein

Unsere Klimaklage hat einen erstenteilerfolg erzielt. Das Bundesverfassungsgericht (BVerfG) hat die Bundesregierung, den Bundesrat, den Bundestag, mehrere Ministerien sowie Fachgremien offiziell zur Stellungnahme zu unseren Vorträgen aufgefordert. Als Frist wurde der 15. Oktober 2025 festgelegt. Diese Aufforderung ist ein starkes Indiz dafür, dass das BVerfG unsere Klage nicht formell abweist und sich im Detail mit unseren Argumenten auseinandersetzt.

Update:

Gutachten unterstützen die Klimaklage

Ende Juni haben wir einen neuen Schriftsatz an das BVerfG gesandt, in dem wir uns mit dem Sondervermögen und der Festschreibung der Klimaneutralität 2045 im Grundgesetz auseinandergesetzt haben. Daraus ist ein Gutachten für unsere Öffentlichkeitsarbeit entstanden. Ein weiterer Schriftsatz ging am 8.10.25 an das BVerfG – diesmal zu neuen Treibhausgas-Budgetberechnungen und der Analyse des Gutachtens des Internationen Gerichtshof für Menschenrechte (IGH).

12.09.2024 Klimaklage 2.0 wird eingereicht!

Die Klimaklage 2.0 von SFV und BUND wird eingereicht. Gemeinsam mit Greenpeace, Germanwatch und der Deutschen Umwelthilfe ziehen wir erneut vor das Bundesverfassungsgericht.

24.07.2025

SFV-Kurzgutachten zur rechtlichen klimapolitischen Lage

Klimaneutralität muss aus verfassungsrechtlicher Sicht deutlich vor 2045 erreicht werden. Art. 143h GG ändert nichts an der aus dem BVerfG-Klimabeschluss.

15.08.2025

1. Meilenstein!

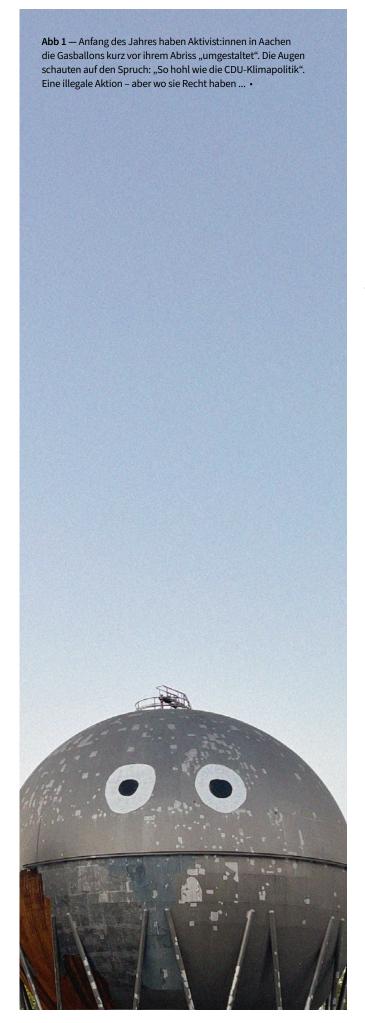
Bundesregierung zur Stellungnahme aufgefordert

Bundesregierung, Bundesrat, Bundestag und mehrere Ministerien müssen bis Mitte Oktober Stellung beziehen.

08.10.2025

Weiteres Schreiben ans BVerfG.

Unsere Justen erhärten anhand aktueller Studien die Argumentation, dass Deutschland kein Treibhausgasbudget mehr hat und Klagen vor dem IGH drohen.



9

2024 2025

energiepolitik

6 Energiepolitik

Katherina Reiches Generalangriff auf den Klimaschutz

Das am 05. August 2025 vorgestellte "Zehn-Punkte-Papier" der (CDU)-Bundeswirtschaftsministerin Katherina Reiche entwirft nicht nur eine falsche Energiepolitik, wie viele Umweltverbände zurecht beklagen. Sondern es ist ein direkter Verstoß gegen das Grundgesetz.

Text — *Rüdiger Haude*

Re-Karbonisierung statt Klimaschutz

Die Extremwetter im gerade zu Ende gehenden Sommer 2025 haben nach einer aktuellen Studie der Universität Mannheim in der Europäischen Union wirtschaftliche Schäden in Höhe von 126 Mrd. Euro verursacht – konservativ geschätzt¹. In Kanada sind in der noch nicht beendeten Waldbrandsaison 2025 infolge zu trockenen Wetters erneut 8,8 Millionen Hektar Wald (88.000 Quadratkilometer) verbrannt². Eine neue Studie von Klimawissenschaftler:innen an der auch Stefan Rahmstorf vom Potsdamer Institut für Klimafolgenforschung beteiligt ist, weist auf einen wahrscheinlichen Zusammenbruch der Atlantischen Meridionalen Umwälzströmung (AMOC) im kommenden Jahrhundert hin, wenn nicht sofort der Ausstoß von Treibhausgasen radikal reduziert wird³. Dies würde zu unbeherrschbaren Disruptionen im Klimasystem der Erde führen. Die Klimakatastrophe macht keine Pause, nur weil die Politik nicht mehr von ihr spricht.

In dieser Situation hat das Bundeswirtschaftsministerium ein wahres Horrorpapier zur künftigen Energiepolitik vorgelegt⁴. Zwischen dem politischen Phrasengeklingel scheint die Hauptbotschaft deutlich hindurch: Die Energiepolitik des Ministeriums läuft auf eine Re-Karbonisierung der Stromerzeugung hinaus. Klimaschutz – immerhin eine Staatsaufgabe mit Verfassungsrang – wird im Wirtschaftsministerium unter Katherina Reiche (CDU) mit Füßen getreten. Reiche spricht lieber von "Bezahlbarkeit" des Energiesystems, wie auf der Pressekonferenz bei der Vorstellung ihres Papiers. Dabei ist klar, dass ihre Vorschläge nicht nur immanent ein besonders teures Modell fordern, sondern auch die Folgekosten des klimapolitischen Bremsmanövers (man denke z. B. nur an die eingangs erwähnten 126 Mrd. Euro) konsequent ausblenden.

EWI-Gutachten: Ausbau Erneuerbare Energien und Klimaschutz sind zentral!

Reiche hatte Ende Juni das konzernnahe *Energiewirtschaftliche Institut* (EWI) sowie die BET Consulting GmbH mit der Erstellung eines "Monitoringberichts" beauftragt, dessen Ergebnisse am 15. Septem-

Energiepolitik 🔍 7

ber der Öffentlichkeit vorgelegt wurden⁵. Der Bericht anerkennt dankenswerterweise, dass *im energiepolitischen Zieldreieck* aus Preisgünstigkeit, Versorgungssicherheit und Umweltschutz nur der letztere – vor allem in Gestalt des Klimaschutzes – Verfassungsrang und deshalb vor den beiden anderen Zielen Vorrang genießt. Der Ausbau der Erneuerbaren Energien sei, so folgert das Papier, "weiterhin in hohem Umfang notwendig"; und wo die aktuellen Entwicklungen von den "normativ-zielerreichenden Szenarien" abwichen, zeige dies die "Notwendigkeit zusätzlicher Maßnahmen, um das Klimaziel zu erreichen".

In der Tat. Vor wenigen Wochen hat das Bundesverfassungsgericht die Bundesregierung (also vor allem Reiches Ministerium) aufgefordert, zur Verfassungsbeschwerde des SFV und des BUND sowie weiteren Beschwerden anderer Umweltverbände Stellung zu nehmen. Dies ist ein wichtiges Signal, dass die 2024 noch gegen unzureichende Klimaschutzbemühungen der Ampel-Regierung eingereichten Beschwerden in Karlsruhe sehr ernst genommen werden. Frau Reiche sendet mit ihrem Papier nun sozusagen das berühmte Zitat des Götz von Berlichingen nach Karlsruhe.¹ Nichts von den zitierten Erkenntnissen des eigentlich als Gefälligkeitsgutachten bestellten Monitoringberichts berücksichtigt der Zehn-Punkte-Plan der Ministerin Reiche. Er konzentriert sich vor allem auf eine Aussage des Papiers: Für das Jahr 2030 würden lediglich 600 - 700 Terawattstunden Elektrizität in Deutschland benötigt (statt der noch von Robert Habeck angenommenen 750 TWh). Damit lässt sich nämlich bei Beibehaltung des Ziels, 80 Prozent dieses Stroms sollten aus erneuerbaren Quellen stammen, eine Reduzierung des Ausbautempos der Erneuerbaren ableiten. Und das war das vorgegebene Ziel.

Tatsächlich ist die Prognose von 600 – 700 TWh Strombedarf realistisch – wenn die gegenwärtige Verweigerung von Klimaschutz bis 2030 beibehalten wird. Wenn hingegen der Antrieb von Fahrzeugen und die Beheizung von Gebäuden durch politische Vorgaben konsequent auf elektrische Technologien (E-Motor, Wärmepumpe) umgestellt werden, wird der Strombedarf viel höher ausfallen. Hier business as usual zu betreiben, heißt, im Verkehrs- und Gebäudesektor gewaltige unnötige Emissionen von Treibhausgasen zu planen. Das hat mit einer "Erreichung der Klimaziele" nichts zu tun. Dass die CDU/CSU gleichzeitig auf europäischer Ebene massiv gegen das beschlossene Zulassungsverbot für Verbrennungsmotoren ab 2035 lobbyiert⁶, zeigt, dass genau dies beabsichtigt ist: eine Verfehlung der ohnedies zu schwachen Klimaziele, und mithin eine Missachtung des Grundgesetzes der Bundesrepublik Deutschland.

Kurzanalyse: 10-Punkte-Plan des BMWE

Reiches Papier gliedert sich in zehn Punkte. Im abschließenden Fazit heißt es, damit würden "wirtschaftliche Realitäten akzeptiert". Die Gestaltungsmacht der Wirtschaftspolitik zieht sich durch das ganze Papier, aber sobald es der Ministerin passt, kommt sie mit der normativen Kraft des Faktischen, also des Status quo, der unantastbar sein soll, auch wenn der Planet dabei vor die Hunde geht. Eine Prämisse des Papiers lautet, die "ungesteuerte Stromproduktion der erneuerbaren Energien" führe zu "teuren Überschüssen". Interessanterweise steht in dem Monitoringbericht, aus dem das Reiche-Papier ja abge-

77

Die Klimakatastrophe macht keine Pause, nur weil die Politik nicht mehr von ihr spricht.

leitet sein will, der Satz: "Durch eine gezielte Überdimensionierung von Erzeugungsanlagen gegenüber der Netzanschlusskapazität könnte die Netzinfrastruktur deutlich effizienter genutzt werden." Der Bericht und die zehn Punkte stehen offenbar nur in einem lockeren Zusammenhang zueinander. Schauen wir uns nun die zehn Punkte von Reiches Papier kurz im Einzelnen an:

Er geht von der genannten Bedarfsprognose (600 – 700 TWh p. a.) aus. "Wir bauen nur so viel zu, wie wir tatsächlich brauchen und es ökonomisch effizient ist", schreibt Reiche. Denn: "Entscheidungskriterium in der Zukunft sind die Systemkosten." Man muss dies richtig verstehen: Entscheidungskriterium in der Zukunft soll nicht der verfassungsrechtlich gebotene Klimaschutz sein. Und der Begriff *Entscheidungskriterium* verweist zwingend auf die Möglichkeit von Entscheidungen: Wie viel "wir tatsächlich brauchen", ist Gegenstand solcher politischer Entscheidungen, unter anderem jener, die Frau Reiche sich mit diesem Papier gerade anschickt zu treffen. Es ist eine verfassungswidrige Entscheidung.

2 Die Erneuerbaren sollen künftig "system- und marktorientiert" gefördert werden. Es ist angesichts der beruflichen Vergangenheit von Frau Reiche verständlich, dass dies dasselbe bedeutet wie konzernorientiert. Es soll vor allem die dezentrale Bürgerenergiewende beendet werden. Den Millionen Haushalten, denen Deutschland den heutigen Stand der Energiewende verdankt, wird der Stinkefinger gezeigt: "Das bedeutet: die konsequente Abschaffung der fixen Einspeisevergütung [...]. Außerdem soll eine Verpflichtung zur Direktvermarktung für Neuanlagen eingeführt werden." Sie wollen eine 6-kW-Anlage auf Ihr Dach setzen? Machen Sie sich erst mal mit Contracts for Difference (CfDs) und Clawback-Mechanismen vertraut! Na, immer noch Lust? Der Monitoringbericht konstatiert übrigens für die letzten Monate, "dass sich die Zubaudynamik im Bereich der Aufdachanlagen abschwächt"; dies könne die Zielerreichung des Erneuerbaren-Ausbaus mittelfristig gefährden. Frau Reiche plant nun eine Verstärkung dieses Trends.

3 Der Ausbau von EE-Anlagen soll "bedarfsgerecht" gesteuert werden. D. h.: "Wo die Netzsituation kritisch ist, trägt der Investor einen höheren Anteil an den Ausbaukosten" und wird also vergrault. Außer es ist ein großer Player, der seine Freiflächenanlage ebensogut in Vorpommern wie in Unterfranken errichten kann.

4 Im Namen der Versorgungssicherheit wird angekündigt: "Ausschreibungen für flexible Grundlastkraftwerke, insbesondere Gaskraftwerke mit Umstellungsperspektive auf Wasserstoff, werden

8 Energiepolitik

priorisiert und pragmatisch gestaltet." Hier zeigt sich Reiches bei *E.ON* gelernte Präferenz für Erdgas, das in Deutschland über den Transport und die Verbrennung noch auf Jahrzehnte hinaus Kohlendioxid und Methan in die Atmosphäre schicken soll. Interessanterweise soll diese *Priorisierung* Bestandteil des *technologieoffenen Kapazitätsmarkts* sein. – Ob die zurückgefahrene Strombedarfsprognose dazu führt, Frau Reiches völlig überdimensionierte Pläne für den Bau von Gaskraftwerken (20 GW) oder Friedrich Merz' trumpeske Ankündigungen vom Beginn dieses Jahres ("Wir müssen so schnell wie möglich 50 Gaskraftwerke in Deutschland bauen, die sofort ans Netz gehen."7) zu dämpfen, darf bezweifelt werden.

- **5** "Verbraucher erhalten marktnahe Preissignale. Last-Management, Batterien und andere Flexibilitätstools werden in variable Stromtarife und Netzentgelte integriert." Dagegen ist nichts einzuwenden.
- 6 Hier endet die Marktnähe: "Die einheitliche Stromgebotszone bleibt erhalten"; d. h., der Windkraft verhindernde Freistaat Bayern profitiert weiterhin als *Trittbrettfahrer* von dem Windenergie-Ausbau der nördlichen Bundesländer, ohne angemessene Durchleitungsgebühren zu bezahlen. Das steigert auch den notwendigen Bau von teuren Übertragungsleitungen. Man vergleiche diese Überlegung mit den Ausführungen in Punkt 3. zu EE-Investitionen.
- Alle Fördermaßnahmen und Subventionen werden auf ihren volkswirtschaftlichen Nutzen hin überprüft und auf das unbedingt nötige Maß reduziert." Man darf vermuten, dass in die Kalkulation des *volkswirtschaftlichen Nutzens* die Vermeidung von Extremwetterkatastrophen nicht mit einfließt. Und man darf weiter vermuten, dass die Subventionsreduktion nicht für die Subventionierung von Agrardiesel und Flugbenzin gilt, und auch nicht für die Forschungsförderung von Phantom-Technologien wie der Kernfusion, sondern lediglich für Erneuerbare.
- 8 Konsequent handelt dieser nachfolgende Punkt von der Forschungsförderung. "Wir wollen das Potenzial neuer Technologien wie beispielsweise Tiefengeothermie, Kernfusion, Wasserstoff und seine Derivate (in allen Farben) sowie Carbon Capture, Utilisation and Storage (CCS/CCU) erschließen ... Halten wir zunächst fest, dass alle die genannten Technologien einer Logik des "Think big!" folgen, womit die Akteursstruktur wieder auf Reiche-Linie liegt. Aber im Detail enthüllt sich noch mehr Aufschlussreiches. Zunächst die Einordnung der Kernfusion als neue Technologie. Bekanntlich wird an dieser Technologie bereits seit 75 Jahren geforscht, und seit 75 Jahren gilt bis heute das Versprechen, dass sie jeweils in 30 Jahren wirtschaftlich anwendbar sein würde – die Fusionskonstante. Diesen Zombie als neu zu verkaufen, hat schon etwas Drolliges. Wichtig ist weiter das farbenfrohe Statement zu Wasserstoff, der nun nicht mehr nur als grüner (mit Erneuerbaren Energien gewonnener), sondern auch bei Einsatz von fossiler und nuklearer Energiegewinnung gefördert werden soll. Eine kleine Hilfestellung für die darbende französische Atomindustrie, eine große weitere Quelle von Treibhausgas-Emissionen. Und auch

die hoch umstrittene *CCS*-Technologie soll im Zusammenhang mit der weiteren Verbrennung fossiler Rohstoffe gutes Forschungsförderungs-Geld erhalten. Frau Reiche hat die Idee und den Sinn von Dekarbonisierung schlicht noch nicht verinnerlicht. Aber das Zitat war noch nicht ganz fertig. In all die genannten Technologien soll viel Geld gesteckt werden, damit "diese künftig einen substantiellen Beitrag zur Kosteneffizienz leisten können". Man setzt von allen Optionen auf die teuersten – um Geld zu sparen. Das gilt im Jahre 2025 als Wirtschaftskompetenz.

- **9** Der "Wasserstoff-Hochlauf" wird noch einmal gesondert angesprochen, um die Buntheit des neuen Ansatzes zu unterstreichen: "Überkomplexe Vorgaben wie die strenge Definition von 'grünem Wasserstoff' auf EU-Ebene werden abgebaut und durch pragmatische Kriterien ersetzt." Merke: Wenn im Hause Reiche der Begriff pragmatisch fällt, darf man es mit der Angst zu tun bekommen.
- Auch CCS/CCU bekommt noch einen eigenen Punkt. Es sei "unverzichtbar für die Dekarbonisierung industrieller Prozesse", "aber auch Kraftwerke und Energieerzeuger erhalten Zugang zu Investitionshilfen". So viel zum Abbau von Subventionen. Die nicht vorhandene öffentliche Akzeptanz soll durch "Informationskampagnen" gefördert werden. Interessant, dass solche Kampagnen für die übrigen Grausamkeiten nicht angedacht sind!

Fazit

Wir sollen also als "wirtschaftliche Realitäten" akzeptieren, was nicht weniger ist als ein brachiales Aushebeln der in den letzten Jahren endlich wieder in Gang gekommenen Energiewende. Es wird immer deutlicher: Mit dem Einzug einer Erdgas-Lobbyistin ins Bundeswirtschaftsministerium schwinden die letzten Hoffnungen, dass Deutschland seinen Beitrag zur Eindämmung der globalen Klimakatastrophe leisten wird. Dies ist nicht einfach eine falsche Politik – angesichts der Verwüstungen, welche die Klimakatastrophe bereits heute anrichtet und welche durch diese Politik weiter angeheizt werden, ist es ein Verbrechen. Ein Menschheitsverbrechen, um es genau auszudrücken.

Rüdiger Haude ist Privatdozent für Geschichte, mit einem Schwerpunkt auf Klimageschichte. Für den SFV war er bis 2024 Öffentlichkeitsreferent

Quellen & Infos www.sfv.de/reichesgeneralangriffklimaschutz

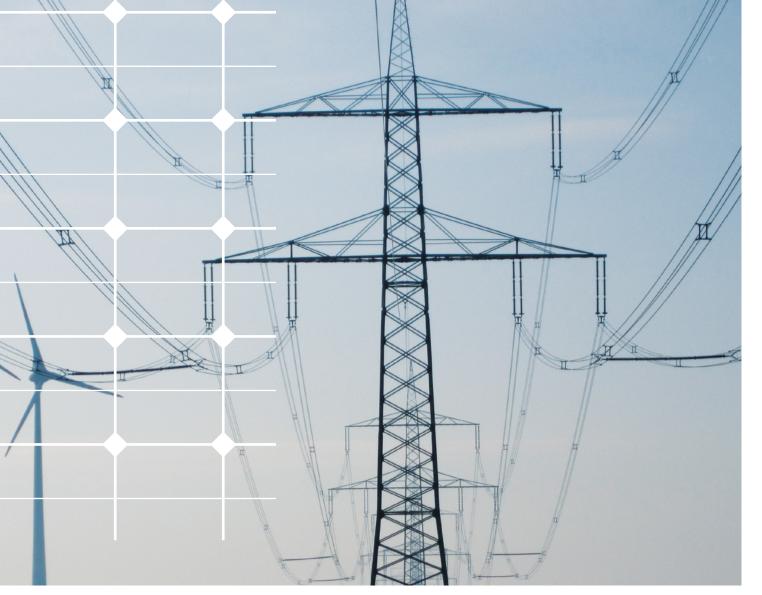


Foto - Molgreen auf Wikimedia/CC BY-SA 3.0

Hohe Netzrenditen – fehlende Investitionen für die Energiewende

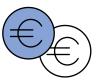
Während deutsche Verbraucher:innen jeden Cent zweimal umdrehen müssen, sprudeln die Gewinne von einzelnen Verteilnetzbetreiber. Zahlt die Energiewende hier die Zeche?

Text — Susanne Jung

Hohe Gewinne der Verteilnetzbetreiber

Der Bundesverband Neue Energiewirtschaft (bne) veröffentlichte Anfang Juli Rechercheergebnisse zu den Gewinnen von Verteilnetzbetreibern (VNB). Analysiert wurden die Bilanzen von von fünfzehn der zwanzig größten VNBs in Deutschland für die Jahre 2019 bis 2023. Diese Unternehmen repräsentieren zusammen etwa 50 % des deutschen Strommarktes. Grundlage der Untersuchung waren

die veröffentlichten Jahres- und Tätigkeitsabschlüsse im Bundesanzeiger. Das zentrale Ergebnis: außergewöhnlich hohe Eigenkapitalrenditen. Laut *bne* lag die durchschnittliche Eigenkapitalrendite der untersuchten Unternehmen im Jahr 2023 bei 20,2 %. Einzelne Netzbetreiber wie *EWE Netz* (50 %), *Pfalzwerke Netz* (39 %) oder *Westnetz* (27 %) erzielten noch deutlich höhere Werte.



Jahresabschluss 2024 (Westenergie)

Bundeswirtschaftsministerin Katharina Reiche war bis zu ihrer Ernennung zur Ministerin Vorstandsvorsitzende der Westenergie AG. Ein Blick ins Lobbyregister zeigt, dass das Unternehmen im letzten Berichtsjahr erhebliche Gewinnsteigerungen verzeichnet hat: Insgesamt legte das handelsrechtliche Ergebnis der Westenergie AG um etwa 58 % zu – von 572 Millionen Euro im Vorjahr auf 901 Millionen Euro im aktuellen Berichtsjahr. ⁴

Der Gewinn von Westenergie AG ging nicht etwa an die Allgemeinheit, sondern wurde vollständig an die Alleinaktionärin E.ON Verwaltung SE abgeführt.

Diese Zahlen sind alarmierend. Wohin fließt eigentlich all das Geld? Wäre es nicht sinnvoll, die hohen Renditen direkt in die Modernisierung unserer Netze und die Digitalisierung zu investieren, damit die Energiewende auf die Zielgerade kommt?

Ohne stabile Netze, Digitalisierung und Personal bleibt die dezentrale Energiewende ineffizient, teuer und unzuverlässig. Genau dies erleben wir aber derzeit. An etlichen Stellen gibt es Behinderungen und Engpässe: Der Ausbau erneuerbarer Energien stockt und wird zunehmend zum Ärgernis der Energiewende, weil Netzanschlüsse für Erneuerbare-Energien-Anlagen blockiert werden. Entweder wird der Anschluss unter Verweis auf "wirtschaftliche Unzumutbarkeit" gänzlich abgelehnt, auf unbestimmte Zeit hinausgezögert und nur genehmigt, wenn keine Einspeisung ("Nulleinspeiseanlagen") erfolgt. Bereits ganze Netzgebiete werden derzeit für neue Anlagen unattraktiv, denn ohne Einspeisung und damit auch ohne Vergütung sinkt die Wirtschaftlichkeit der Anlage erheblich. Wird bei Solaranlagen mit Speicher ein Drittel der erzeugten Strommenge weder eingespeist noch vergütet, entstehen zum Beispiel bei einer durchschnittlichen PV-Anlage mit 10 kWp über 20 Jahre finanzielle Einbußen von immerhin ca. 5.000 Euro.

Regelmäßig wird von ratsuchenden PV-Einsteiger:innen und Neu-Anlagen-Besitzenden kritisiert, dass Netzanschlussanfragen verspätet oder gar nicht beantwortet werden, oft ohne nachvollziehbare Begründung. Melden sich betroffene Anlageninvestor:innen, erhalten sie häufig standardisierte KI-Antworten oder hören lediglich von überlastetem Personal. Auch die Abrechnung der Vergütungen erfolgt nicht zuverlässig und kann sich mitunter über mehrere Monate bis hin zu über einem Jahr hinziehen, was sich in unserer Beratungspraxis zeigt. Auch bei den für die Energiewende so wichtigen steuerbaren Verbrauchseinrichtungen wie Speichern, Wärmepumpen und Ladeinfrastruktur verzögert sich vielerorts der Anschluss. Grund dafür sind vor allem Probleme beim Rollout intelligenter Messsysteme. So stockt ebenso die Umsetzung der gemeinschaftlichen Gebäudeversorgung in Mehrfamilienhäusern, weil der Datenaustausch über intelligente Messsysteme bislang nicht in die etablierte Marktkommunikation eingebunden ist. Ohne ausreichendes Personal und die verfügbare Technik ist eine zügige Modernisierung der Stromnetze derzeit schlicht nicht möglich. Zusätzlich zu dieser Verunsicherung und dem entstehenden Unmut entzündete sich jüngst auch die Diskussion, zukünftig auch die Eigenversorgung aus Solaranlagen mit weiteren Netzgebühren zu belegen. Welche Gründe rechtfertigen diesen Vorschlag und in welche Taschen soll dieses Geld fließen?

Defizite gefährden die Energiewende

Gerade für eine dezentrale Energiewende sind starke Verteilnetze essenziell. In diesem Kontext stellt sich auch die Frage, ob die derzeitige Regulierung eine verantwortungsvolle, zukunftsorientierte Nutzung der hohen Renditen im Sinne des Netzausbaus tatsächlich sicherstellt oder ob hier strukturelle Fehlanreize bestehen. Strukturelle Defizite bremsen nicht nur die Energiewende, sondern gefährden auch den Wirtschaftsstandort Deutschland. Besonders Solarbetriebe sind betroffen, die durch das tagtäglich spürbare Ausbremsen der Energiewende keine Planungssicherheit und keine verlässlichen Rahmenbedingungen für ihre Arbeit haben. Zugleich wird Bürgerinnen und Bürgern die faire Teilhabe am Transformationsprozess der Energiewirtschaft erschwert. Damit wird die Chance auf einen wesentlichen Beitrag zur Akzeptanz leichtfertig verspielt.

Wir haben bei "Frag den Staat" nachgefragt

Wir nahmen die Recherche-Ergebnisse des Bundesverbands Neue Energiewirtschaft zu Netzrenditen zum Anlass, eine offizielle Anfrage an die Plattform *Frag den Staat* zu stellen.² Unsere Fragen:

- Stimmen diese hohen Eigenkapitalrenditen und wenn ja, sind diese rechtlich zulässig?
- Ist die Bundesnetzagentur verpflichtet, die Netzrenditen über die Steuerung von Netzentgelten und den Netzausbau zu regulieren?
- Können Netzbetreiber verpflichtet werden, einen Teil ihrer Gewinne in den Ausbau der Verteilnetze zu investieren?

Energiepolitik

11

Die Antwort kam wenige Wochen später. Autor war die *Bundesnetzagentur (BNetzA)*. Sie stellte zunächst klar, dass die von *bne* dargestellten Renditen deutlich überhöht seien. Nach eigener Auswertung von "Tätigkeitsabschlüssen von über 50 Strom-VNB und über 40 Gas-VNB lagen in der dritten Regulierungsperiode (2019 – 2023) die durchschnittlichen jährlichen handelsrechtlichen EK-Renditen der Strom-VNB bei 12 % und der Gas-VNB bei 18 %."

Da es sich hier um Durchschnittspreise im zweistelligen Bereich handelt, sehen wir die Offenlegung der BNetzA eher als Bestätigung der bis zu 50% hohen Renditen, die bne in der Recherche feststellte. Erschrocken hat uns die Erkenntnis, dass im Gasnetz-Bereich noch weitaus mehr abgeschöpft werden kann. Das wirft die Frage auf, wer in der Bundespolitik tatsächlich das Steuer gegen den Ausbau erneuerbarer Wärmenetze und Wärmepumpen in der Hand hält. Doch das ist ein anderes Thema.

Interessant ist im Zusammenhang mit den hohen Renditen der Verteilnetzbetreiber auch, dass gerade der *Bundesverband der Energieund Wasserwirtschaft (BDEW)* heftige Kritik an einem neuen Regulierungsprozess der BNetzA, dem sogenannten *NEST-Prozess*, übt.³ Dort diskutiert man u.a. das Absenken der Berichtszeiträume und regulatorischen Effizienzmechanismen von 5 auf 3 Jahre, die die Erlöse um knapp 200 Mio. Euro oder ca. 0,3 % abschmelzen sollen. Nicht viel, aber immerhin.

Vorsorgepflicht der Netzbetreiber

Nach dem Energiewirtschaftsgesetz (EnWG) sind Netzbetreiber verpflichtet, ihre Netze sicher, zuverlässig und leistungsfähig zu betreiben sowie vorausschauend auszubauen. Diese sogenannte Vorsorgepflicht umfasst nicht nur den Schutz vor technischen Störungen und Sicherheitsrisiken, sondern auch die rechtlich verankerte Aufgabe, den Anschluss erneuerbarer Erzeugungsanlagen, Speicher, Wärmepumpen und Ladeinfrastruktur diskriminierungsfrei zu ermöglichen. Netzbetreiber dürfen sich also nicht auf bestehende Kapazitäten berufen, sondern sind gesetzlich gehalten, Engpässe durch rechtzeitige Investitionen und Netzausbau zu vermeiden.

Diese Zahlen sind alarmierend.
Wohin fließt eigentlich all das
Geld? Wäre es nicht sinnvoll,
die hohen Renditen direkt in die
Modernisierung unserer Netze
und die Digitalisierung zu investieren, damit die Energiewende
auf die Zielgerade kommt?

Erfüllen die Verteilnetzbetreiber ihre gesetzlichen Pflichten tatsächlich zuverlässig oder schaut niemand so genau hin? Wer kontrolliert hier eigentlich wen? Und sind die Prüfintervalle der Bundesnetzagentur für die Effizienzkontrolle von Netzausgaben noch zeitgemäß oder längst überholt? Es drängt sich die Frage auf, ob wir nicht dringend eine politische Debatte über Verantwortung und Pflichterfüllung der Verteilnetzbetreiber brauchen. Denn eins ist klar: Die dezentrale Energiewende steht und fällt mit starken Verteilnetzen, die in der Lage sind, den wachsenden Anteil von Solar- und Windstrom zuverlässig aufzunehmen. Ebenso zwingend ist es, parallel massiv in Speichertechnologien und Wärmenetze zu investieren, um Erzeugung, Verbrauch und Versorgungssicherheit dauerhaft in Einklang zu bringen. Wenn also zweistellige Renditen - gleichgültig in welchen Zeiträumen - möglich sind, darf die entscheidende Frage nicht sein, wie schnell private Investoren Gewinne realisieren können, sondern wie diese Gewinne sinnvoll in den Ausbau der Energiewende und in die öffentliche Daseinsvorsorge zurückfließen. Gerade kommunale Unternehmen zeigen bereits, dass dieser Weg machbar ist.

Susanne Jung Susanne setzt sich seit über 25 Jahren beim SFV für die Energiewende ein. Seit 2019 ist sie Geschäftsführerin der Bundesgeschäftsstelle.

Quellen & Infos www.sfv.de/netzrenditen

Speicher, Wind und Sonne Wind erselzen W. ersetzen kohle und Alolli ersetzen kohle

Speicher, Wind und Sonnenstrom...

... ersetzen Kohle und Atom. Mit diesem Slogan machten wir beim Solarenergie-Förderverein Deutschland (SFV) schon früh Druck, als es um die Vision von 100 Prozent Erneuerbaren Energien ging. Unsere Botschaft war und bleibt klar: Ohne Speicher ist die vollständige Abschaltung fossiler Kraftwerke kein realistisches Ziel – höchstens ein schönes Märchen. Speicher sind der Schlüssel, um die Schwankungen von Sonne und Wind auszugleichen und die Versorgungssicherheit zu garantieren.

- Susanne Jung

Rückblick: Politische Versäumnisse

Über Jahrzehnte hinweg spielte der notwendige Ausbau von Speichern kaum eine Rolle. Stattdessen bremste die Fossil-Lobby die Energiewende aus und säte Zweifel an ihrer Umsetzbarkeit. Immer wieder hieß es: "Allein schaffen es die Erneuerbaren nicht." Begriffe wie "Flatterstrom" oder "Zappelstrom" wurden gebetsmühlenartig wiederholt, als sei es ein Naturgesetz, dass Sonne und Wind niemals zuverlässig genug sein könnten. Für viele Skeptiker galt es als unlösbares Problem, Zeiten ohne Sonne und Wind im gesamten Jahresverlauf zu überbrücken.

Diesen Ball nahm die Politik gern auf. Als Bundesumweltminister Peter Altmaier (CDU) 2012 auf der Internationalen Stromspeicherkonferenz IRES auftrat, hatte er eine große Bühne, aber nur ein kleines Geschenk im Gepäck: Gerade einmal 20 Millionen Euro wollte er locker machen, um Forschung und Entwicklung von Stromspeichern zu fördern. Ein Tropfen auf den heißen Stein. Mit so wenig Geld ließ sich keine Energiewende gestalten, höchstens ein paar Pilotprojekte. Immerhin kam schon jede fünfte Kilowattstunde aus Erneuerbaren. Wenig später, auf der "Handelsblatt"-Konferenz zu Erneuerbaren Energien, schlug Altmaier einen klaren Ton an: Er warnte vor einer "übereilten Energiewende". Daher wehte also der Wind. Was nützen schon Stromspeicher, wenn der Ausbau eher abflauen sollte.

2014 bekam die deutsche Speicherpolitik einen weiteren Dämpfer, ausgerechnet von der Denkfabrik Agora Energiewende. In einer Studie legte sie damals fest: Speicher würden frühestens bei einem Anteil von 60 Prozent Erneuerbaren gebraucht.² Zu teuer und unnötig, hieß es. Man plante schon damals, notfalls die Erzeugungsspitzen abzuregeln, statt solide Speicherlösungen zu planen. Für Fossilkraftwerksbetreiber klang das wie Musik in den Ohren: Je länger Photovoltaik- und Windanlagen ohne ausreichende Speicher auskommen müssen, desto länger bleibt die Stromversorgung auch auf Kohle- und Gaskraftwerke angewiesen.

Das Bundeswirtschaftsministerium machte sich die Einschätzung von *Agora* zu eigen und goss sie in seine "Roadmap Speicher".³ Damit wurde Stillstand zur Strategie, mit gravierenden Folgen. Wertvolle Jahre gingen verloren, in denen Forschung, Technikentwicklung, Industriezubau und tausende Arbeitsplätze hätten entstehen können. Ganz zu schweigen von Einsparungen beim Netzausbau, die durch sinnvolle Synergien mit Speichern erreichbar gewesen wären. Wäre schon damals klug gehandelt worden, müssten wir aktuell mit über 60 % Erneuerbare Energien am Strommix nicht mit den Engpässen beim Netzausbau, mit Abregelungen und Anschlussverweigerungen von EE-Anlagen leben.

Heute sagen Kritiker deshalb: Die Haltung von Altmaier und Co. hat Deutschland nicht nur beim Klimaschutz, sondern auch im globalen Wettlauf um Speichertechnologien ausgebremst. Und sie hat uns ins Hintertreffen geraten lassen, was uns heute noch finanziell schwer belastet. Speicher sind nicht die Kür am Ende der Energiewende, sie sind die Grundvoraussetzung dafür, dass Wind- und Solarstrom zuverlässig ins Netz integriert werden können.

Stand heute: Speicher in Deutschland

Deutschland verfügt inzwischen über rund 21 Gigawattstunden (GWh) Stromspeicher-Kapazität, wie aus den Battery Charts der RWTH Aachen zu entnehmen ist.⁴ Der Löwenanteil – etwa 17,5 GWh – entfällt auf private Heimspeicher. Die installierte Leistung liegt bei rund 14 Gigawatt (GW), davon 11,5 GW in Eigenheimen. Über 2 Mio. Batteriespeicher sind bundesweit im Einsatz.

Die beachtliche Entwicklung bei den Heimspeichern zeigt, wie stark Bürger:innen die Energiewende selbst in die Hand genommen haben. Fast jede PV-Anlage ist inzwischen mit einem Heimspeicher ausgestattet. Die technischen Umsetzungen sind vielfältig, der Markt der Anbieter wächst stetig und die Preise sind enorm

Die beachtliche Entwicklung bei den Heimspeichern zeigt, wie stark Bürger:innen die Energiewende selbst in die Hand genommen haben.

gesunken. Vor 10 Jahren wurden ca. 2250 €/kWh Speicherkapazität fällig. Heute bekommt man mittlerweile Speicher unter 400 €/kWh.⁵ Selbst für Kleinstanwendungen wie Steckersolargeräte locken die Anbieter mit attraktiven Preisen. Bedauerlich ist allerdings, dass die meisten privaten Heimspeicher "dumm" betrieben werden. Im Beitrag von Dr. Weniger, HTW Berlin, wird gezeigt, wie Akkus durch eine intelligente Fahrweise netzdienlich eingesetzt werden und eine große Ressource zur Entlastung der Netze und der Strompreise darstellen können (Seite 22).

Für weitere praxisnahe Fragen, etwa zur Wirtschaftlichkeit, Lebensdauer, Anzahl der Ladezyklen, Energie- und Lade-Management sowie zum Unterschied zwischen Notstrom, Ersatzstrom und Inselbetrieb sowie zu Zelltechnologien für Akkus bietet der SFV gern weiterführende Informationen.

Neben diesen Speichern für private Anwendungen werden auch immer mehr Großbatterien installiert, die Netzbetreibern helfen, Spannungsänderungen und Frequenzschwankungen auszugleichen. Für die Zukunft gilt: Nur das Zusammenspiel von Heimspeichern, Großbatterien und sektorübergreifenden Lösungen (Strom, Wärme, Mobilität) macht das System wirklich stabil.

Herausforderungen: Technik, Regulierung, Wirtschaftlichkeit

Nach aktuellen Schätzungen des *Instituts für Solare Energiesysteme* (ISE) wird der Bedarf an stationären Großspeichern bis 2030 bei rund 100 GWh und bis 2045 bei etwa 180 GWh liegen. Vor uns liegen also noch erhebliche Herausforderungen. Vor diesem Hintergrund wäre es sinnvoll, energiepolitische Weichen für eine stärkere Regionalisierung und Sektorenkopplung der Energieversorgung, für wirtschaftlich tragfähige Energy-Sharing-Konzepte, für Quartierspeicher und für Vehicle-to-Grid-Lösungen zu stellen. Auf diese Weise ließe sich der tatsächliche Speicherbedarf deutlich nach unten korrigieren, die Energiewende beschleunigen und zugleich der ökologische Fußabdruck reduzieren. Apropos Vehicle-to-Grid: In Fahrzeugen lagern z. B. derzeit etwa 115 GWh ungenutzte Batteriekapazität. Dieses enorme Potenzial wird aufgrund von Versäum-

nissen bei Smart-Meter-Einführung und regulatorischen Hürden auch mittelfristig nicht für stationäre Speicheranwendungen genutzt. Schon seit Jahren wird in den Koalitionspapieren der jeweils amtierenden Bundesregierung das Ziel beschworen, bidirektionales Laden möglich zu machen. Nun stellt sich die Frage: Schafft es die neue Schwarz-Rot-Koalition endlich? Experten warnen, dass die Lücke zwischen verfügbarer Batteriekapazität und tatsächlich nutzbarem Speicher die Energiewende verteuern und den Ausbau erneuerbarer Energien bremsen könnte. Die umfassende Nutzung der netztechnischen Möglichkeiten, die sich aus den Batteriekapazitäten der Elektromobilität ergeben, wäre also nicht nur klug für die Energieversorgung, sondern auch für die Einsparung wertvoller Rohstoffe. In einem Solarbrief-Interview fragen wir deshalb Branchenexperte Markus Fendt, wie das alles funktioniert und welche Hürden es gibt (Seite 24).

Ein weiteres Hindernis ist die komplexe Rechtslage. Noch ist gesetzlich nicht eindeutig definiert, wie Speicher im Zusammenhang mit Netzanschluss, technischen Vorgaben und Baukostenzuschüssen zu behandeln sind. Auch der flexible Wechsel zwischen EE-Speichern und mit Mischstrom gefüllten Speicher ist neu. Einen Überblick dazu gibt Rechtsanwältin Dr. Christina Bönning-Huber (Seite 32). Trotz des deutlichen Aufschwungs bei Batteriespeichern und anderen Energiespeichertechnologien stehen Projekte in Deutschland nach wie vor vor erheblichen Hürden. Für viele Investoren von Großspeichern ist die Wirtschaftlichkeit noch unsicher, insbesondere, weil die Erlöse stark von den Strompreisen an der Leipziger Strombörse abhängen. Diese Preise schwanken stark und können sogar negativ werden, wenn zu viel Strom aus Sonne und Wind ins Netz eingespeist wird. Von solchen Phasen können die Speicherbetreiber profitieren, tragen allerdings die vollen Risiken. Von den Strompreisschwankungen an der Strombörse können nicht nur Großspeicher-Betreiber, sondern ab Anfang des Jahres auch Privatpersonen profitieren. Was das finanziell ausmachen könnte und wie ein Umstieg auf dynamische Stromtarife funktioniert, erklärt Andreas Ampferl von unserer SFV-Infostelle Nordbayern (Seite 52).

 $\mbox{\sf Abb}\,2$ — Der SFV bei einer der zahlreichen Energiewende-Demos – hier 2012 vor dem Brandenburger Tor in Berlin $\, \cdot \,$ Foto: SFV

Wie geht es in Deutschland weiter?

Die neue Koalition betont im Koalitionsvertrag Transparenz, Planbarkeit und Pragmatismus bei der Energiewende. Wirtschaft und Verbraucher:innen sollen stärker eingebunden werden, etwa durch Mieterstrom, Bürgerenergie oder Energy Sharing. Das klingt motiviert, doch die konkreten Vorgaben bleiben vage. Genauere Ausbauziele für Stromspeicher, Photovoltaik oder Windkraft fehlen, ebenso klare Zeitpläne für Netzausbau oder Flexibilisierungsmaßnahmen. Im Bereich Speicher und Flexibilität gibt es immerhin Absichtsbekundungen: Hemmnisse sollen abgebaut, E-Autos und Heimspeicher stärker einbezogen, bidirektionales Laden gefördert und Energiespeicher als "überragendes öffentliches Interesse" privilegiert werden. Auch Mehrfachbelastungen durch Steuern, Abgaben und Netzentgelte sollen reduziert werden.

Diese knapp formulierten Absichten lassen zumindest hoffen. Doch ohne konkrete Maßnahmen, klare Ziele und rasche Umsetzung droht Deutschland im internationalen Wettbewerb um Speichertechnologien weiter zurückzufallen. Wer die Energiewende ernst nimmt, muss jetzt Tempo bei Speichertechnologien und Flexibilisierung machen, sonst bleiben Sonne und Wind Stromträger der Zukunft, aber ohne Speicher nur ein unvollständiges Versprechen.

Gleichzeitig plant die Bundesregierung den Bau neuer Gaskraftwerke – ein Schritt, der einem ambitionierten Neustart in der Speicherpolitik zu widersprechen scheint. Hinzu kommt, dass die extremen Aussagen von Katherina Reiche, über eine mögliche Abschaffung der solaren Förderung, die Investoren und Verbraucher gleichermaßen verunsichern. Vor diesem Hintergrund drängt sich eine zentrale Frage auf: Wird Deutschland die Energiewende und den drängenden Speicheraufbau diesmal ernsthaft beschleunigen? Viel Zeit hierfür bleibt uns nicht mehr – die Klimakrise diktiert den Handlungsdruck. Aber es gibt aber auch gute Nachrichten. Deutschland hat mit seiner starken Solarstrom- und Speicher-Community gute Voraussetzungen, sich wieder unter den Top 10 der Energiewende-Vorreiter zu platzieren. Momentan liegen wir nur auf Platz 16. Es braucht nur den politischen Willen.

 ${\sf Abb\,3}-{\sf Schon\,2013}$ hat der SFV auf die Bedeutung von Speichern für die Energiewende hingewiesen • Karikatur: Gerhard Mester

Susanne Jung
Susanne setzt sid

Susanne setzt sich seit über 25 Jahren beim SFV für die Energiewende ein. Seit 2019 ist sie Geschäftsführerin der Bundesgeschäftsstelle.

Quellen & Infos www.sfv.de/schwerpunktspeicher-wind-sonnenstrom

Erneuerbarer Strom, 24/7 und 365 Tage im Jahr

Bis zum Jahr 2030 werden nach Schätzungen von Wissenschaftler:innen des ISE Freiburg 104 GWh stationäre Speicherkapazität benötigt. Besonders relevant gilt dabei die Langzeitspeicherung, um Dunkelflauten im Winter zu überbrücken. Aber Stromspeicher haben auch darüber hinaus viele Funktionen: Wenn bei viel Sonne und Wind zu viel Strom im Netz ist, können Speicher entlasten.

Text — Susanne Jung

Die gute Nachricht vorweg: Auf der Jahrestagung des Deutschen Wetterdienstes (DWD) 2024 stellte Vizepräsidentin Renate Hagedorn klar, dass es auch unter dem Blickwinkel des Klimawandels keine Hinweise gäbe, dass sogenannte Dunkelflauten – Phasen, in denen weder Sonne noch Wind ausreichend Strom liefern – in den vergangenen Jahren zugenommen haben. Damit sei die Stromerzeugung aus Windkraft und Photovoltaik auch künftig nicht risikoreicher geworden. Die Energieerzeugung aus Wind und Sonne ergänzte sich auch 2024 gut, wie die letzten DWD-Daten deutlich zeigten. Die kombinierte Betrachtung des jährlichen Verlaufs von Windgeschwindigkeit und Sonneneinstrahlung ergab ein gewohntes Muster: Während die höchsten Strahlungswerte in den Sommermonaten erreicht wurden, lieferten die Wintermonate die stärksten Winde. ¹

Entwarnung gibt es dennoch nicht. Trotz fehlender eindeutiger Definition wurden in verschiedenen Studien Untersuchungen zur Häufigkeit von Dunkelflauten durchgeführt. Zweiwöchige Phasen, in der die modellierte mittlere Residuallast - also der tägliche Strombedarf, der nach Abzug der Einspeisungen von Wind- und Solarenergie aus dem gesamten Stromverbrauch übrig bleibt - über 70 GW betrug, in Deutschland von 2006 bis 2016 im Schnitt alle zwei Jahre einmal auf.² Jede Forderung nach einer Energiewende stößt demnach unweigerlich auf die Frage, wie dieses Problem zu lösen sei. Klar ist: Ohne Speicher keine 100-prozentige Energiewende. Dabei geht es nicht nur um die Überwindung örtlicher Distanzen zwischen Erzeugungszentren und Verbrauchsregionen, sondern auch um die zeitliche Verschiebung der Energie.

Für eine vollständige Versorgung mit erneuerbaren Energien muss die Elektrifizierung aller Sektoren konsequent vorangetrieben werden. Überall dort, wo bislang fossile Brennstoffe genutzt werden, sollen Strom, Batterien oder Umwandlungsprodukte wie Wasserstoff und Methanol zum Einsatz kommen. Heizungen werden über Wärmepumpen elektrisch betrieben, der Individualverkehr auf Elektroautos umgestellt, und Digitalisierung sowie Künstliche Intelligenz sorgen für zusätzlichen enormen Strombedarf. Auch energieintensive Industrien wie Chemie- und Stahlunternehmen benötigen große Mengen schnell verfügbarer Energie. Gleichzeitig soll die Abhängigkeit von Energieimporten drastisch reduziert werden. Die

Folge: Der Strombedarf wird massiv steigen. Und damit auch der Speicherbedarf. Der Strombedarf Deutschlands lag in den letzten Jahren bei unter 500 TWh.³ Experten des ISE Freiburg gehen davon aus, dass sich der Strombedarf bis 2045 verdreifachen könnte.⁴

Die Energiewende steht also nicht nur vor der Herausforderung, genügend Strom zu erzeugen, sondern ihn auch zuverlässig zu speichern und zu verteilen - klimaschützend, versorgungssicher und bezahlbar. Ohne Speicherlösungen, Effizienz und Lastmanagement bleiben 100 % Erneuerbare nur eine Vision.

Kurzzeitspeicher

Kurzzeitspeicher dienen primär dazu, einen kurzfristigen Ausgleich von Angebot und Nachfrage zu gewährleisten und das Stromnetz stabil zu halten. Sie speichern elektrische Energie über Zeiträume von Sekunden bis wenigen Stunden und geben sie bei Bedarf blitzschnell wieder ab. Diese Fähigkeit ist zentral: Sie fangen schwankenden Windstrom oder überschüssige Solarenergie auf und gleichen Lastspitzen aus, wenn abends der Stromverbrauch steigt. Ihre kritischste Rolle spielen sie als Regelleistung – dem Notfallmechanismus des Netzes. Die Frequenz muss konstant bei 50 Hertz liegen. Sobald Erzeugung und Verbrauch auseinanderfallen, gerät sie ins Wanken. Dann agieren Kurzzeitspeicher als Turbo-Stabilisatoren: Sie reagieren in Sekunden, gleichen kleinste Ungleichgewichte aus und verhindern, dass aus einer Störung ein Blackout wird.

Batteriespeicher sind die bekannteste Technologie im Bereich der Kurzzeitspeicher – sowohl in Privathaushalten (PV-Speicher) als auch in Großanlagen. Dank ihrer schnellen Lade- und Entladefähigkeit sind sie ideal, um tageszeitliche Schwankungen netzdienlich auszugleichen.

Auch Pumpspeicherkraftwerke (PSKW) bleiben unverzichtbar. Sie speichern große Energiemengen über Stunden bis Monate und sind für alle drei Stufen der Regelleistung geeignet: Sie reagieren entweder innerhalb von Sekunden ("Primärreserve), fünf Minuten ("Sekundärreserve") oder Viertelstunden ("Minutenreserve"). Ihre hohe Leistung und schnelle Verfügbarkeit machen sie zu einem Rückgrat der Netzstabilität.

Abb 1 — In windarmen Nächten oder im Winter, wenn der Energiebedarf besonders hoch ist, sind wir umso mehr auf verlässliche Energiespeicher angewisen • Foto: Adobe Stock

Neben diesen etablierten Technologien gewinnen Schwungradspeicher an Bedeutung. Mit überschüssiger elektrischer Energie wird ein Schwungrad angestoßen und beschleunigt - die Energie wird dann als Rotationsenergie gespeichert. Dieser Speicher reagiert extrem schnell und ist besonders zyklenfest. Für die kurzfristige Frequenzstabilisierung ist das ideal. Ein Beispiel ist das Projekt HYDRAD⁵ der Hochschule Flensburg, das Schwungräder mit Photovoltaikanlagen kombiniert. Auch Druckluftspeicher (CAES) bieten Potenzial: Sie speichern Energie in Form von komprimierter Luft in unterirdischen Kavernen. Das Kraftwerk Huntorf bei Elsfleth⁶ gilt als Pionier dieser Technologie, arbeitet allerdings noch mit Erdgas. Reine Druckluftspeicher - etwa im ADELE-Projekt⁷ werden bislang nur erforscht, gelten aber als flexibel und für Regelleistung geeignet. Zusammengefasst: Kurzzeitspeicher sind die unentbehrlichen Puffer, die ein von Wind und Sonne abhängiges Energiesystem tagtäglich stabil hält.

Langzeitspeicher

Neben dem Problem der Netzstabilität und kurzfristigen Kapazitätsverschiebung, müssen auch saisonale Angebotsschwankungen ausgeglichen werden. Experten gehen von Wochen bis Monaten aus⁶, für die wir Langzeitspeicher benötigen. Wir sollten daher alle Optionen offenhalten, um die wechselnde Energieerzeugung auszugleichen. Besonders in den Wintermonaten, wenn die Sonneneinstrahlung gering und der Stromverbrauch hoch ist, ermöglichen Langzeitspeicher die Nutzung von Energieüberschüssen aus sonnen- und windreichen Zeiten. Im Gegensatz zu Kurzzeitspeichern zeichnen sich Langzeitspeicher durch hohe Energiespeicherkapazität bei vergleichsweise geringer Lade- und Entladeleistung aus. Technologisch kommen verschiedene Konzepte zum Einsatz. Große Hoffnungen werden auf Power-to-X (PtX)-Verfahren gesetzt, bei denen überschüssige elektrische Energie die chemischen Bindungen von Ausgangsstoffen verändert. Ein zentrales Beispiel ist die Elektrolyse, bei der Wasser in Wasserstoff und Sauerstoff gespalten wird. Der Wasserstoff kann als Energieträger gespeichert werden, während der Sauerstoff entweicht.

Bei Power-to-Liquid (PtL) werden überwiegend synthetische flüssige Kraftstoffe aus erneuerbarer Energie erzeugt.

Auch Großbatterien eignen sich, um Kapazitätsreserven im Stromnetz bereitzustellen. In Deutschland steigt die Zahl der Anträge für Netzanschlüsse solcher Speicher, getrieben durch fallende Batteriezellenpreise und die Chancen der EE-Integration. Die Wirtschaftlichkeit von Großbatterien hängt derzeit jedoch stark von Preissignalen an der Leipziger Strombörse (EEX) ab, da Betreiber nur bei hohen Differenzen zwischen Lastspitzen und Überschusszeiten wirtschaftlich handeln können. Ein echter Kapazitätsmarkt, in dem Großbatterien gezielt für Netzstabilität und Reserveleistung vergütet werden, ist bisher nicht vollständig etabliert. Für eine zuverlässige Bereitstellung wären stärkere Anreize, langfristige Vergütungsmechanismen und sichere Finanzierungsbedingungen notwendig. Nur so könnten Großbatterien systematisch als Planungssicherheit für das Stromnetz und zur Absicherung von Dunkelflauten eingesetzt werden.

Fazit:

Eine verlässliche, 100 % erneuerbare Energieversorgung erfordert ein integriertes System aus Erzeugung, Kurzzeit- und Langzeitspeichern sowie intelligentem Lastmanagement. Ohne Speicherlösungen bleibt die Vision einer vollständig erneuerbaren Stromversorgung ein fragiles Projekt – Speicher sind das Herzstück der Netzstabilität und der Schlüssel, um kurzfristig Stromangebote aus Wind und Sonne auszugleichen und um Dunkelflauten zu überbrücken.

Wie kriegen wir Strom in die Dunkelflaute?

Stromspeicher haben viele Funktionen: Wenn bei viel Sonne und Wind zu viel Strom im Netz ist, können Speicher entlasten. Bei Dunkelflauten können sie Strom ins Netz abgeben. Welche Möglichkeiten es gibt, um Strom über das gesamte Jahr hinweg verfügbar zu machen und die Energiewende erfolgreich umzusetzen, zeigen wir in dieser Grafik.

Pumpspeicher-Kraftwerke

Pumpspeicherkraftwerke sind mechanische Energiespeicher: Mit überschüssigem Strom wird Wasser in einen Obersee gepumpt, bei Strombedarf rauscht das Wasser aus dem See durch Turbinen, treibt sie an und erzeugt so wieder elektrische Energie für mehrere Stunden. Sie dienen als Kurzzeitspeicher, wobei durch die Lagerung des Wassers im See auch über Monate riesige Mengen Strom gespeichert werden kann.

Das größte Pumpspeicherkraftwerk Goldisthal in Thüringen hat eine elektrische Speicherkapazität von 8,5 GWh und eine Maximalleistung von 1 Gigawatt. Bei Turbinenvolllast kann 9 Stunden lang 1 GW ins Netz abgegeben werden. In Deutschland stehen 28 aktive Pumpspeicherkraftwerke mit ca. 6,3 GW Leistung und einer Stromspeicherkapazität von 35 – 40 GWh. Viel mehr gibt unser Land geografisch nicht her.

Batterien: Heim- & Quartierspeicher

Batterien speichern elektrische Energie über elektrochemische Reaktionen in den Batteriezellen. Dabei unterscheiden sie sich nicht nur hinsichtlich ihrer Kapazitäten und Größen, sondern auch in Bezug auf ihre Zellchemie. Bei Heim- oder Quartierspeichern kommen oft Lithium-Eisenphosphat-Batterien (LFP) zum Einsatz, die ohne Cobalt oder Nickel auskommen.

Mit Batteriespeichern kann der Eigenverbrauchsanteil einer PV-Anlage gesteigert werden, da Strom vom Tag auch abends und nachts verfügbar ist. Batterie-Heim- oder Quartierspeicher sind daher Kurzzeitspeicher. Wenn sie smart gesteuert werden, können sie auch die Netze stabilisieren. Bis heute sind fast 2 Mio. dezentrale Stromspeicher mit einer Kapazität von knapp 18 GWh installiert.

Batterien: Elektroautos

Der private Individualverkehr wird zukünftig hauptsächlich batterie-elektrisch sein. Die meisten der verbauten E-Autobatterien, insg. Kapazitäten von 115 GWh, können zurzeit nur mit Strom "betankt" werden. Da die Kapazitäten von E-Auto-Batterien ein Vielfaches größer sind als Batterie-Heimspeicher, sollen E-Autos in Zukunft auch Wohnungen oder Quartiere mit Strom versorgen und die Netze durch die flexible Strom-Auf- und entnahme stabilisieren (bidirektionales Laden). Um in Elektroautos bei begrenztem Bauraum möglichst große Reichweiten zu erzielen, werden Zellchemien mit besonders hoher Energiedichte genutzt. Hier kommen Lithium-Ionen-Batterien zum Einsatz, in Kombination mit Nickel, Mangan, Cobalt (NMC) oder Nickel, Cobalt, Aluminium (NCA). Wir hoffen, dass in Zukunft auch weniger bedenkliche Batterie-Typen verwendet werden.

4 Batterien: Großspeicher

Batterie-Großspeicher sind stationäre Speicher, die auch auf Zellchemie mit einer geringen Energiedichte zurückgreifen, dafür aber eine höhere Zyklenfestigkeit, geringere Brandgefahr, niedrigere Kosten oder eine bessere Umweltbilanz aufweisen, wie z. B. Lithium-Eisenphosphat- (LFP) oder Natrium-Ionen-Zellen. Insgesamt sind knapp 3 GWh installiert. Sie dienen sowohl der Netzstabilisierung als auch der Versorgungssicherheit. Aktuell gehen sehr viele Netzanschluss-Anfragen bei den Netzbetreibern ein, weil der Betrieb von Großspeichern aufgrund niedriger Börsenstrompreise und hoher Bedarfe rentabel wird.

9 Power to Gas

Für die Langzeitspeicherung von Energie kommen z.B. Wasserstoff oder synthetisches Methan in Frage. Beides wird über Power-to-Gas-Verfahren gewonnen. Dabei wird mit (erneuerbarem) Strom in einem elektrochemischen Prozess Wasser (H_2O) in Wasserstoff (H_2) und Sauerstoff (O_2) gespalten. Dieser Vorgang heißt Elektrolyse. Der Wasserstoff kann komprimiert, verflüssigt oder in andere Energieträger wie Methan (CH_4) umgewandelt werden. Für eine spätere Verwendung können die Power-to-Gas-Produkte in speziellen Tanks oder Kavernen gespeichert werden. Für die Stromerzeugung wird Wasserstoff oder Methan verbrannt: Die heiße Luft treibt Turbinen an und ein Generator erzeugt elektrische Energie. Alternativ wird Wasserstoff in einer Brennstoffzelle mit Sauerstoff in Verbindung gebracht, auch dabei entstehen Strom und Wärme. Der größte Nachteil bei Power-To-Gas-Verfahren sind die hohen Wirkungsgradverluste bei allen Prozessschritten: Bei Wasserstoff zur Stromerzeugung bleibt nur ca. 30 % der eingesetzten Energie übrig.

Biogas und Biomethan

Methan kann auch über Biogasanlagen gewonnen werden. Aus Biomasse wie Gülle, Kompost, Mist oder Energiepflanzen entsteht durch Vergärung Rohbiogas, welches zu Biomethan aufbereitet werden kann. Beide Stoffe können in einer Kraft-Wärme-Kopplungsanlage direkt in Strom und Wärme umgewandelt werden. Biomethan kann zudem auch direkt ins Erdgasnetz eingespeist werden. Wenn Anlagen flexibel betrieben werden, können sie Stromnetze entlasten. Gespeichert wird das Biomethan in Gasdruckbehältern (z. B. als CNG – komprimiertes Methan), oder in unterirdischen Gasspeichern (wie Erdgas).

Power to Liquid – synth. Methanol

Wasserstoff kann auch in flüssige, chemische Energieträger wie Methanol umgewandelt werden. Dafür wird Wasserstoff mit Kohlendioxid synthetisiert und anschließend verflüssigt. Den Prozess nennt man Power-to-Liquid. Der Vorteil zu Wasserstoff: Methanol muss nicht energieaufwendig verdichtet werden und hat einen etwa fünfmal so hohen Energieinhalt pro Volumen. Methanol lässt sich dadurch sehr gut über lange Zeit speichern. In einer Brennstoffzelle / Gasturbine kann es bei Bedarf zur Wärme- und Stromversorgung genutzt werden. Aber auch die Nutzung als Treibstoff, besonders für Landmaschinen, ist denkbar. Der Wirkungsgrad für die Stromerzeugung liegt auch hier nur bei 18-34 Prozent (wenn die Abwärme der Prozessschritte nicht genutzt wird).

8 Forschung

Weitere Speichertechnologien befinden sich noch in Pilot-Phasen: Graphen-Speicher, die das leitfähige und stabile Material Graphen zur Energiespeicherung in Form von Batterien oder Superkondensatoren nutzen. Oder Schwungradspeicher, die innerhalb von Millisekunden Energie aufnehmen und wieder abgeben können und so zur Netzstabilisierung beitragen. Welche Rolle diese Speicher für die Energiewende in Zukunft einnehmen werden, wird sich zeigen.

8 Vorurteile gegen Batteriespeicher

- Tobias Otto, Taalke Wolf & Susanne Jung

Private Heimspeicher erfreuen sich zunehmender Beliebtheit – nicht zuletzt auf Grund stark sinkender Preise und techologischer Weiterentwicklung. Einige Vorurteile und Mythen zu Speichern sind deshalb längst überholt. Wir geben einen kompakten Überblick.

77

Elektroautos sind nicht klimafreundlich!

Die Klimabilanz von Elektroautos ist über ihre gesamte Lebensdauer hinweg deutlich besser als die von Verbrennern. Zwar entstehen in der Produktion, besonders durch die Batterieherstellung, höhere CO₂-Emissionen. Je nach Batteriegröße und Stromquelle ist der CO₂-Rucksack nach 20.000-60.000 km ausgeglichen. E-Autos fahren lokal emissionsfrei und sind dreimal energieeffizienter. Die Abwesenheit von Abgasen wie Stickoxiden verbessert zudem die Luftqualität in Städten. Die Gesamtbilanz hängt maßgeblich vom verwendeten Strommix ab. Mit Ökostrom, idealerweise vom eigenen Solardach, sind E-Autos fast emissionsfrei. Doch auch in Deutschland, wo der Strommix bereits zu 60% aus Erneuerbaren Energien besteht, ist die Bilanz sehr gut und verbessert sich stetig. Elektroautos leisten so einen entscheidenden Beitrag zur Klimawende.

Batterien eignen sich nicht zur Langzeitspeicherung!

Stimmt: Lithiumbatterien eignen sich gut für die mobile oder stationäre Kurzzeitspeicherung (z. B. Solarstrom vom Tag in die Nacht speichern). Für eine Speicherung über Wochen/Monate sind sie technisch und wirtschaftlich weniger geeignet (hohe Kosten, Selbstentladung). Erste saisonale Langzeitspeicher setzen auf Wärme, Druckluft oder Wasserstofferzeugung durch Elektrolyse. Lithiumbatterien sind sehr gut geeignet für den täglichen Ausgleich, weniger für die saisonale Speicherung.

Batteriespeicher sind empfindlich bei Kälte!

Das stimmt und ist relevant bei Speichern, die draußen betrieben werden, z. B. Balkonspeicher und E-Autos. Sehr niedrige oder hohe Temperaturen und Temperaturschwankungen können zu einer schnelleren Degradation von Batteriespeichern beitragen. Hochwertige Speichersysteme sind oft temperaturüberwacht oder besitzen Heiz- oder Kühlelemente. Am besten eignet sich ein geschützter Einbauort, um die Lebensdauer nicht zu verkürzen.

Batterie-Heimspeicher erhöhen die Wirtschaftlichkeit meiner PV-Anlage!

Das stimmt nicht immer. Ob ein Speicher wirtschaftlich ist, hängt von mehreren Faktoren ab, z. B. von Anschaffungskosten, Lebensdauer und Eigenverbrauchssteigerung. Die Faustregel, die man im Internet findet, lautet: 1 kWh Speicherkapazität pro installierter Kilowattpeak-PV-Leistung (maximal). Dabei ist aber wichtig, auch den Jahresstromverbrauch im Blick zu haben. Hier gilt: pro 1000 kWh Strombedarf benötigt man nicht mehr als 1 kWh Speicherkapazität. Ist die Dimensionierung nicht ausgewogen, wird es unwirtschaftlicher. Viele Leute installieren zu große Speicher, in der Hoffnung sich so im Winter mit Solarstrom zu versorgen, dabei können diese selten von der PV-Anlage gefüllt werden.

Lassen Sie sich z. B. vom SFV beraten und prüfen Sie die Wirtschaftlichkeit mit Online-Rechnern.

Die Batterieproduktion ist umweltschädlich!

Der Rohstoffabbau für Batterien ist bekannt dafür, global ökologische und soziale Probleme zu verursachen. Etwa durch immensen Wasser- und Flächenverbrauch sowie Verschmutzung, CO₂-Emissionen oder gesundheitsschädliche und menschenunwürdige Arbeitsbedingungen in den Förderländern. Anlass zur Hoffnung geben Forschung und Entwicklung: Recyclingverfahren werden verbessert, neue Zellchemie reduziert oder ersetzt sogar den Lithiumeinsatz. Mehr dazu zu lesen auf *Seite 28–31*.

Batteriespeicher altern, ohne dass man sie nutzt!

Dieses Vorurteil stammt oft aus Erfahrungen mit alten Batterien oder den Akkus in Smartphones und Laptops. Moderne Heimspeicher sind jedoch deutlich langlebiger. Die meisten Heimspeichersysteme nutzen heute Lithium-Eisenphosphat (LiFePO4). Diese Technologie ist für eine lange Lebensdauer ausgelegt.

Zwei Faktoren bestimmen hauptsächlich die Alterung:

- 1. Kalendarische Alterung: Sie tritt unabhängig von der Nutzung auf und wird durch hohe Temperaturen oder dauerhaft hohe Ladezustände beschleunigt.
- 2. Zyklenalterung: Sie hängt von der Anzahl der Ladeund Entladezyklen ab. Hochwertige LiFePO4-Speicher erreichen 4.000 bis 6.000 Zyklen. Bei rund 250 Ladezyklen pro Jahr entspricht das einer theoretischen Lebensdauer von etwa 20 Jahren.

Andere Technologien wie Salzbatterien oder Redox-Flow-Systeme können sogar noch langlebiger sein, sind aber derzeit teurer und weniger verbreitet. Fazit: Moderne Batteriespeicher sind robust und für viele Jahre Betrieb ausgelegt – das Vorurteil ist überholt.

Batteriespeicher verlieren schnell an Kapazität!

In der Regel verlieren Batteriespeicher jährlich nur wenige Prozent ihrer Kapazität. Die Garantien der Hersteller sind ein Indikator für diese Haltbarkeit. Sie geben eine Garantie, dass z. B. nach 8-15 Jahren oder 5000 bis 10000 Zyklen noch 70-80 % der ursprünglichen Kapazität vorhanden sind. Der Speicher ist auch nach Ablauf der Garantiezeit noch funktionsfähig – nur eben mit verringerter Speichermenge. Der Kapazitätsverlust wird u. a. durch die Anzahl der Ladezyklen, Temperatur, Ort der Installation sowie den Ladezustand beeinflusst. Tiefentladung und Überladung sollten vermieden werden. In modernen Speichern eingebaute Steuerungssysteme oder Energiemanagementsysteme können dabei helfen, die Lebensdauer der Speicher zu optimieren. Viele Speicher können heute über einen Zeitraum von bis zu 20 Jahren zuverlässig betrieben werden. Im Anschluss an die Nutzung von Batteriespeichern in eAutos gibt es Second-Use-Konzepte. Siehe auch:

www.sfv.de/noch-besser-als-recycling-second-life-batterien

Batterien brennen schnell!

Moderne Batteriespeicher sind nicht brandgefährlich, wenn sie qualitativ hochwertig sind, zertifiziert und fachgerecht installiert. Die Technik ist heute so weit entwickelt, dass sie sicher im Alltag eingesetzt werden kann. Laut einer Studie der RWTH Aachen liegt die Wahrscheinlichkeit eines PV-Speicher – Brandes bei 0,0047 % – und damit in einer ähnlichen Größenordnung wie die Wahrscheinlichkeit eines Brandes, der durch einen Wäschetrockner ausgelöst wird. Auch für das E-Auto gilt: Brände von Elektrofahrzeugen sind drei bis vier Mal seltener als die Entzündung von Benzinfahrzeugen. Gleichzeitig wird auch an neuen Feststoff- oder Gelbatterien geforscht, die weniger entflammbar sind. Auch erste selbst löschende Batterien wurden erprobt.

Wie smarte Ladestrategien die Netze entlasten und die Batterielebensdauer verlängern

Die Initiative "Dein Stromspeicher kann mehr!" der HTW Berlin soll Solaranlagenbetreiber:innen dazu motivieren, ihre Batteriespeicher mittags zu laden. Intelligente Batterieladestrategien lassen sich bei vielen der über 1,8 Millionen Solarstromspeicher in Deutschland mit nur wenigen Klicks aktivieren. Der Vorteil: Die Batteriespeicher halten länger, wirken Engpässen im Stromnetz an sonnigen Tagen entgegen und entlasten obendrein den Bundeshaushalt jährlich um einen zweistelligen Millionenbetrag.

— Dr. Ing. Johannes Weniger

Heimspeicher netzdienlicher betreiben

Der Großteil der über 1,8 Millionen in Eigenheimen installierten Batteriespeicher lädt frühmorgens, sobald Solarstromüberschüsse anfallen. Was dabei problematisch ist: Der Batteriespeicher ist an wolkenlosen Tagen bereits im Laufe des Vormittags vollständig geladen. Anschließend werden die gesamten Solarstromüberschüsse in das Netz eingespeist. Damit der Heimspeicher bestmöglich zur Energiewende beiträgt, sollte er die solare Einspeisespitze zur Mittagszeit reduzieren. Die Stromnetzbetreiber könnten so mehr Photovoltaikanlagen in das bestehende Netz integrieren. Der Knackpunkt: Viele private Betreiber:innen kennen die Vorteile dieser intelligenten Batterieladung ihrer Heimspeicher nicht und haben sie daher nicht aktiviert (Abb. 1).

Prognosebasierte Ladestrategien machen den Batteriespeicher wirtschaftlicher

Intelligente Energiemanagementstrategien verzögern die Batterieladung mithilfe von Solarstromprognosen. Das reduziert die Standzeiten bei hohen Ladezuständen, was die Lebensdauer von LithiumIonen-Batterien um durchschnittlich 2 Jahre verlängert. Bei einem 10-Kilowattstunden-Stromspeicher erhöht die zusätzliche Betriebszeit die Kosteneinsparung um mindestens 800 Euro (Abb. 2).

Das prognosebasierte und verzögerte Laden von Photovoltaik-Speichersystemen bietet zusätzliche Vorteile, insbesondere bei Anlagen, deren *DC-Nennleistung* (Direct Current bzw. Gleichstrom) die *AC-Nennleistung* (Alternating Current bzw. Wechselstrom) des Hybridwechselrichters übersteigt. In solchen Fällen entsteht zur Mittagszeit häufig ein DC-Überschuss, da die Solarmodule mehr Strom erzeugen, als über die AC-Seite ins Netz eingespeist werden kann. Ohne Speicher müsste dieser Überschuss abgeregelt werden, wodurch wertvoller Solarstrom verloren ginge.

Durch die gezielte Batterieladung in den Mittagsstunden kann dieser DC-Überschuss jedoch direkt in einen DC-gekoppelten Speicher geladen werden. So wird die AC-Seite entlastet, und die PV-Anlage kann ihren vollen Ertrag ausschöpfen, ohne durch die begrenzte AC-Leistung des Wechselrichters eingeschränkt zu werden. Das erhöht die Gesamteffizienz der Anlage und verbessert die Eigenverbrauchsquote des erzeugten Solarstroms.

Abb 1 — Intelligente Heimspeicher fangen die Solarstromspitzen ab, noch bevor sie in das Netz gelangen. Das macht im Stromnetz Platz für weitere neue Photovoltaikanlagen \bullet Grafik: HTW Berlin

Abb 2 — Prognosebasierte Ladestrategien verkürzen die Standzeit des Batteriespeichers bei hohen Ladezuständen. Das reduziert die kalendarische Batteriealterung • Grafik: HTW-Berlin

Mittags ladende Solarstromspeicher entlasten das EEG-Konto

Durch den verzögerten Beginn der Batterieladung speisen Photovoltaik-Batteriesysteme mit prognosebasiertem Energiemanagement vermehrt in den Vormittagsstunden Strom in das Netz ein. Also genau dann, wenn die Stromnachfrage und damit die Erlöse an der Strombörse in Deutschland höher sind als zur Mittagszeit. Simulationsanalysen zeigen, dass die intelligente Ladung zur Mittagszeit den mittleren Marktwert des eingespeisten Solarstroms im Jahr 2024 um 28 Prozent steigerte. Je höher der Marktwert einer Kilowattstunde Solarstrom ist, desto weniger wird das EEG-Konto und letztlich der Steuerzahler belastet.

Die Batterieladestrategie und damit das Netzeinspeiseverhalten von Photovoltaik-Batteriesystemen hat einen großen Einfluss darauf, wie viel die Übertragungsnetzbetreiber mit der Vermarktung des eingespeisten Solarstroms an der Strombörse verdienen.

Alle Betreiber:innen sollten die prognosebasierte Ladung ihrer Heimspeicher aktivieren

Lädt der Batteriespeicher bislang noch nicht prognosebasiert, lässt sich das in den Einstellungen schnell ändern. Mit maximal sechs Klicks können Betreiber:innen die Vorteile eines prognosebasierten Energiemanagements nutzen.

Der Kern der Initiative "Dein Stromspeicher kann mehr!" besteht darin, den Betreiber:innen eine Anleitung an die Hand zu geben, damit sie das prognosebasierte Laden bei ihren Speichersystemen aktivieren können. Insgesamt sieben Hersteller folgten unserer Einladung und unterstützen die Initiative: E3/DC, FENECON, KOSTAL, RCT POWER, SMA, SONNEN und TESVOLT. Die Unternehmen FENECON und RCT POWER liefern ihre Heimspeichersysteme sogar seit mehreren Jahren mit einem prognosebasierten Ladeverfahren aus, das standardmäßig aktiviert ist. Auf der Webseite "So aktivierst du die prognosebasierte Batterieladung" der HTW Berlin finden Interessierte alle Informationen, um die prognosebasierte Batterieladung ihrer Heimspeicher zu aktivieren.

Die prognosebasierte Batterieladung zur Mittagszeit

- entlastet die Stromnetze und wirkt Netzengpässen entgegen.
- macht im Stromnetz Platz für weitere neue PV-Anlagen.
- entlastet das EEG-Konto, da weniger Strom zu Zeiten geringer Börsenstrompreise eingespeist wird.

Abb 3 — Wenn der Stromspeicher nicht vormittags, sondern in den Mittagsund Nachmittagsstunden lädt, hat das viele Vorteile • Grafik: HTW-Berlin

Abb 4 — Die Batterieladestrategie und damit das Netzeinspeiseverhalten von Photovoltaik-Batteriesystemen hat einen großen Einfluss darauf, wie viel die Übertragungsnetzbetreiber mit der Vermarktung des eingespeisten Solarstroms an der Strombörse verdienen \bullet Grafik: HTW Berlin

[...] mehr Info

Initiative "Dein Stromspeicher kann mehr!" der HTW Berlin:

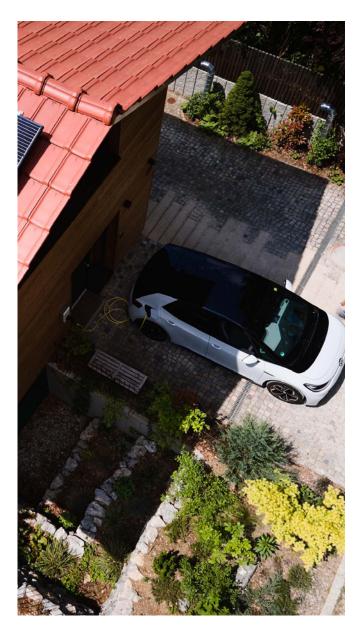
https://solar.htw-berlin.de/dein-stromspeicher-kann-mehr/

Webseite "So aktivierst du die prognosebasierte Batterieladung": https://solar.htw-berlin.de/prognosebasiert-laden/

"Nullvergütung bei negativen Börsenstrompreisen und weitere Konstruktionsfehler des Solarspitzen-Gesetzes": https://solar.htw-berlin.de/publikationen/nullverguetung-solarspitzen-gesetz/

Dr.-Ing. Johannes Weniger

arbeitet seit 2009 in der Solarbranche und ist Gründungsmitglied der Forschungsgruppe Solar-speichersysteme an der HTW Berlin. Seine Promotion zur simulationsbasierten Bewertung von Photovoltaik-Batteriesystemen schloss er 2019 an der TU Berlin ab.


www.sfv.de/smartespeicherladestrategien

Ouellen & Infos

Wenn E-Auto-Batterien die Netze entlasten: Status Quo zum bidirektionalen Laden

Wir haben Marcus Fendt von The Mobility House Energy GmbH gefragt, wann bidirektionales Laden endlich auch in Deutschland zur gängigen Praxis wird und wie die Automobilnutzung von Morgen aussieht. Dabei haben wir erfahren, dass der gesamte Speicherbedarf bis 2030 theoretisch bereits über die Elektrofahrzeugflotte abgedeckt ist. Diese als stationäre Speicher zu verwenden, scheitert aber nicht bloß an bürokratischen Hürden ...

Interview — Marcus Fendt

Abb 1 — Mit bidirektionalem Laden kann das eAuto den Haushalt mit Strom versorgen • Foto © The Mobility House Energy GmbH

Kurz und knapp: Worum geht's beim bidirektionalen Laden?

Bidirektionales Laden heißt: Elektrofahrzeuge werden nicht nur für Mobilität, sondern zusätzlich als Stromspeicher verwendet, um zum Beispiel ein Haus (*Vehicle-to-home*) oder das gesamte Netz mit Strom bzw. Netzdienstleistungen zu versorgen (*Vehicle-to-grid*).

Warum ist bidirektionales Laden so wichtig?

Elektroautos verfügen über große Speicherkapazitäten, weit größer als die eines privaten Heimspeichers. Gleichzeitig brauchen wir für die Energiewende Speicher, um Schwankungen im Netz, die eine erneuerbare Stromproduktion mit sich bringt, auszugleichen. Dafür braucht es Flexibilität in beide Richtungen: V2G-fähige Elektrofahrzeuge können Energie in das Netz einspeisen, wenn die Nachfrage hoch ist, und Energie aus dem Netz, wenn die Nachfrage niedrig ist, aber das Angebot hoch (z. B. Solarspitzen, Hell-Brisen). Dadurch wird die Stabilität des Energiesystems verbessert, mehr günstiger erneuerbarer Strom integriert und nicht abgeschaltet. Außerdem ist weniger Netzausbau nötig.

Wie viel Speicherpotenzial steckt denn in E-Auto-Batterien?

Aktuell gibt es in Deutschland 1,83 Mio. vollelektrische Autos. Die meisten Modelle haben Batteriekapazitäten von 40 bis 100 kWh. Das summiert sich! Aktuell wird geschätzt, dass über 132 GWh Speicher existieren. Das sind enorme Mengen, etwa doppelt so viel wie alle hiesigen Pumpspeicherkraftwerke zusammen. Allerdings ist davon bislang nur ein kleiner Teil, etwa 166.000 Fahrzeuge, technisch in der Lage, bidirektional zu laden. Aber das wird sich in Zukunft ändern, fast alle Neufahrzeuge sind V2G-fähig.

Können Sie beschreiben, wie die Automobilnutzung zukünftig aussehen wird? Was verändert sich für die E-Autofahrer:innen im Alltag? Wann wird ein Auto aufgeladen, wann wird es entladen, wann zum Fahren verwendet?

Für PV-Anlagen-Besitzer:innen, also vermutlich viele Ihrer Mitglieder, fängt es damit an, dass ein Teil der Kapazitäten aus der

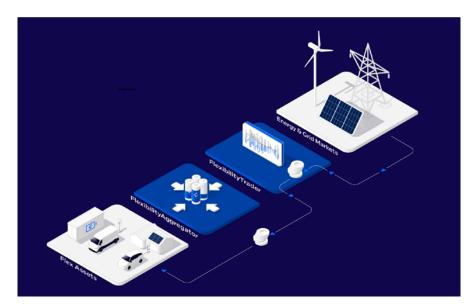


Abb 2 — Durch V2G werden Elektroautos zusätzlich als smarte, stationäre Speicher genutzt und können entsprechend der Netzauslastung und Mobilitätsbedürfnisse be- oder entladen werden. • Grafik: The Mobility House Energy GmbH

Fahrzeugbatterie abends auch zur Stromversorgung des Haushalts verwendet wird. Wenn das Elektroauto tagsüber (bestenfalls zu Solarspitzenzeiten) aufgeladen werden kann, kann es den bisher handelsüblichen Heimspeicher sinnvoll ergänzen. Auf einen Heimspeicher wird man aktuell noch nicht verzichten können, da er als Pufferspeicher benötigt wird. Aufgrund der hohen Eigenverbräuche von Elektroautos entlädt man diese kurz mit hoher Leistung in den Heimspeicher und nutzt diesen dann für die geringen (Stand-by-) Leistungen im Haushalt. Wichtig für diese Anwendung ist ein kompatibles und intelligentes Home-Energy-Management-System (HEMS), das mit der jeweiligen bidirektionalen Ladestation kommunizieren kann. Über Vehicle-to-Grid (V2G) wird der Eigenverbrauch dann weiter optimiert: überschüssiger Strom und die Flexibilität, die eine Fahrzeugbatterie bietet, wird intelligent im Energiesystem angeboten. Zwingende Voraussetzung dafür sind smarte Stromzähler.

Was wird sich noch verändern?

Sowohl die Denke über Elektroautos als auch über die Energiewende und erneuerbare Energien. Mit V2G wird Elektroautofahren günstiger, das wird den Wechsel beschleunigen. Der Vergleich zum Smartphone ist hier passend. Viele haben am Anfang gedacht, sie brauchten es nicht. Am Ende haben die Vorteile, trotz einiger Nachteile (z. B. Akkulaufzeit), überwogen. Auch die Politik wird begreifen, dass sie damit neue Narrative bespielen kann. Energiewende und Elektroauto sind nicht mehr ideologisch grün aufgeladen, sondern wirtschaftlich sinnvoll.

Was kann beim V2G gesteuert werden – wie wird entschieden, wann und zu wie viel Prozent ein Fahrzeug be- oder entladen wird?

Beim V2G können die Kund:innen selbst entscheiden, was der minimale, sogenannter *State of Charge* (SoC) ist, ab dem die Batterie immer sofort geladen werden soll. Zum Beispiel mindestens 100 km. Dann kann der Abfahrtszeitpunkt und der Wunsch-SoC zum Abfahrtszeitpunkt bestimmt werden. Bei mir z. B. jeden morgen um 6 Uhr 80% und am Samstag um 5 Uhr 95%.

Wie funktioniert zukünftig die Abrechnung eines Elektroautos? Mit welchen finanziellen Einsparungen ist zu rechnen?

Es gibt Technologieunternehmen, wie unser Unternehmen *The Mobility House Energy*, die sich auf die Aggregation und Vermarktung des Stroms aus kleinteiligen und dezentral verteilten Elektroautos spezialisiert haben. Alle möglichen Besonderheiten, wie der jeweilige

Mehr Infos: HEMS

Ein Home-Management-Energy-System (HEMS) aktiviert Stromverbraucher wie Heizung, Geschirrspüler oder Waschmaschine, wenn viel PV-Strom vom Dach oder der vollgeladenen Batterie verfügbar ist, um so den Eigenverbrauch zu maximieren, oder wenn gerade der Strom sehr preisgünstig aus dem Netz bezogen werden kann, was die Wirtschaftlichkeit verbessern kann.

Ist zusätzlich zum PV-Speicher auch ein E-Auto mit seiner Batterie an das HEMS angeschlossen, könnten beide Batterien als Verbraucher (beim Laden) oder als Stromquelle (beim Entladen) genutzt werden.

Tipp: Modellcheck

Welche Modelle können bidirektional laden? Und warum sind eigentlich nicht alle Elektro-Autos V2G-fähig?

Diese Infos und eine Zusammenstellung Marken und Modelle gibt es hier:

mobilityhouse-energy.com/de_de/ knowledge-center/artikel/welcheautos-koennen-v2a

Abb 3 — Nissan Leaf: Das erste Fahrzeug, welches ein Großkraftwerk präqualifiziert und ins deutsche Stromnetz integriert wurde (Hagen) • Foto: The Mobility House Energy GmbH

Mobilitätsbedarf, die Anforderungen der Netzbetreiber oder die Batteriegewährleistungsauflagen der Automobilhersteller werden dabei berücksichtigt. Es gibt außer uns weltweit noch kein Unternehmen, das V2G kommerziell in Serie hat, allerdings bislang nur in Ländern, die die bürokratischen Weichen bereits gestellt haben, Frankreich zum Beispiel.

Die Fahrzeugbatterien werden am Intraday- und Kapazitätsmarkt vermarktet, Kund:innen erhalten etwa 11 Cent pro eingesteckter Stunde Strom. Bei durchschnittlich 13 Stunden täglich sparen Fahrer:innen rund 40 Euro im Monat. Einsparungen bei den Fahrstromkosten von 600-800 Euro pro Jahr wären für Kundinnen und Kunden in Deutschland möglich, zusätzlich ergeben sich Erlöspotenziale für Automobilhersteller (OEM) und CO2-Reduktionen.

Sind 13 Stunden nicht etwas hoch gegriffen?

In Frankreich sind es aktuell im Durchschnitt ca. 13 Stunden, also knapp über 50 % eines Tages. Wir haben aber auch Kund:innen, die stecken 17 Stunden am Tag ein.

Hier würden wir gerne kurz auf unterschiedliche Nutzungssituationen eingehen: Sie sprechen von bis zu 600 – 800 Euro Ersparnis im Jahr, in wie fern sind diese abhängig vom Standort des Autos, z. B. mit oder ohne direktem Ladezugang, mit oder ohne eigener PV-Anlage.

Die Basis der oben genannten Ersparnis ist auf 100-%ige Verfügbarkeit von 10 kW Netzanschluss gerechnet, was einem Einfamilienhaus entspricht. Bei MFH reduziert sich das ggf. je nach Anzahl Elektroautos und dem Netzanschluss. Eine PV-Anlage integrieren wir in die Optimierung und immer, wenn der Strom aus dieser günstiger ist, was aufgrund der Netzentgelte und Steuern fast immer der Fall ist, wird das berücksichtigt. Wir garantieren dann einen fixen kWh-Preis im oberen Drittel der Durchschnittspreise für den privaten Strombedarf und zahlen pro eingesteckter Stunde des Elektroautos ca. 10 - 15 Cent aus. So reduziert sich die Stromrechnung der Kund:innen, ohne, dass diese einen zusätzlichen Aufwand haben. Eingesteckte Stunde heißt dann nicht nur, wenn Strom aus dem Elektroauto bezogen wird, sondern wirklich immer, wenn es angeschlossen ist. Auf die Verfügbarkeit des Batteriespeichers kommt es an.

Good to know:

Alle Vorteile durch bidirektionales Laden von E-Autos auf einen Blick:

- Betriebskosten der Endkund:innen werden gesenkt.
- Die Batterie wird systemdienlich genutzt, die Netze entlastet.
- Erneuerbare Energien müssen nicht abgeschaltet werden, das spart enorme Summen ein und ist ökologisch sinnvoll.
- Je mehr Erneuerbare genutzt werden, desto weniger CO2-Emissionen entstehen.
- Ressourceneinsparung: Die Batterien der E-Autos werden nicht nur für Mobilitätszwecke genutzt.
- In Frankreich fahren Renault Kunden bereits ca. 10.000 km umsonst.

Wer verdient noch an der Be- und Entladung der Elektroautos?

Erstmal fahren die Durchschnittskund:innen eines Elektroautos durch das bidirektionale Laden fast umsonst. Was darüber hinaus am Energiemarkt verdient wird, teilen sich die beteiligten Player: Automobilhersteller, Technologieanbieter, ggf. auch noch Energieversorger, soweit dieser beteiligt ist.

Bidirektionales Laden lohnt sich aber nicht nur für Eigentümer:innen von Elektro-Fahrzeugen...

Nein, wenn E-Auto-Batterien Preisspitzen an der Börse glätten und den Einsatz fossiler Kraftwerke in Zeiten mit geringer Stromproduktion verringern, dann hat das auch gesamtgesellschaftliche, ökonomische Vorteile: Zum Beispiel reduzieren sich die Kosten, die aktuell durch Redispatch entstehen, also der Abregelung von Stromerzeugern bei Netzüberlastung. Diese Kosten werden aktuell von allen Stromkund:innen über den Strompreis übernommen. Auch der Einsatz fossiler Spitzenlastenkraftwerke wird signifikant reduziert, der Strompreis wird günstiger. Studien gehen von bis zu 8,4 Milliarden Euro Systemkosten-Einsparung jährlich aus.

Aktuell funktioniert bidirektionales Laden in Deutschland noch nicht? Woran liegt's?

In Deutschland hängen wir regulatorisch leider ziemlich hinterher. Die technische Voraussetzung ist gegeben, aber es scheitert noch am teueren Messkonzept für V2G (zweiter Zähler) dem schleppenden Smart Meter Rollout bzw. der dahinter liegenden Prozesse. Und solange der Strom aus E-Auto-Batterien doppelte Netzentgelte zahlen muss, nämlich beim Be- und beim Entladen, wird es nicht wirtschaftlich.

Im Durchschnitt liegen die Netzentgelte bei 11 Cent, also ca. 30 % des Strompreises, und werden eigentlich nur beim Strombezug erhoben. Wieso ist das bei der Einspeisung von Strom aus E-Auto-Batterien anders?

Für das Laden des Elektroautos (Strombezug) werden selbstverständlich Netzentgelte bezahlt. Entlade ich das Auto jedoch z. B. in der Abendspitze netzdienlich mit mittags geladenem PV-Strom und muss diesen dann bis zum Morgen wieder nachladen, zahle ich nochmal Netzentgelte. Das zerstört den Business Case. Großspeicher sind demgegenüber bis 2029 befreit und sprießen daher aktuell wie Pilze aus dem Boden, weil sie super rentabel sind

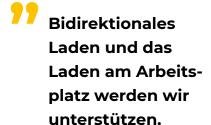
Für Hauseigentümer:innen mit PV-Anlage müssten die Netzentgelte doch vollständig entfallen: das Beladen eines Elektroautos über das Hausnetz und auch das Entladen in das Hausnetz belastet doch keine Netze / ist netzentgeldbefreit?

Bei Vehicle-to-home (V2H), also wenn ich aus dem Auto nichts in Netz zurückspeise, sondern alles im Haus lasse, stimmt das.

Wie sieht es hier politisch aus, wann ist mit Fortschritten zu rechnen?

Das Thema ist seit 2021 im Koalitionsvertrag verankert, 2025 erneut. Erst im Februar hat die CDU/CSU-Bundestagsfraktion die damalige Bundesregierung aufgefordert, darzulegen, warum V2G bislang nicht ermöglicht wurde. Die *Nationale Plattform Mobilität* (NPM), die *Nationale Leitstelle Ladeinfrastruktu*r (NLL), der VDA, der BDEW sowie die "Coalition of the Willing" im BMWK fordern die Einführung seit Jahren und haben alle relevanten Umsetzungsvorschläge erarbeitet. In 2026 ist mit einer typisch deutschen komplizierten Lösung zu rechnen. Hoffentlich eher Anfang als Ende.

Was sind die nächsten regulatorischen Schritte auf dem Weg zum V2G?


Erstens muss die Doppelbelastung von zwischengespeichertem Strom aus Fahrzeugbatterien weg. Zweitens brauchen wir dringend mehr *Smart Meter* (intelligente Messsysteme) und die dahinterliegenden Prozesse müssen kund:innenfreundlich, einheitlich, effizient und digital gestaltet werden. Und Drittens braucht es die Einführung dynamischer Netzentgelte und die marktgestützte Beschaffung von Flexibilität durch Verteilnetzbetreiber auf Wettbewerbsmärkten.

Die deutsche Automobilindustrie steht unter erheblichem Handlungsdruck ...

Absolut! Wettbewerbsfähige Lösungen entstehen gerade außerhalb Deutschlands – die Gefahr besteht, dass Innovationsführerschaft und Wertschöpfung ins Ausland abwandern. Bidirektionalität spart für die Kund:innen ungefähr doppelt soviel wie undirektionales Laden. Wenn ich die Flexibilitäten der Fahrzeuge (aber auch z. B. Heimspeicherbatterien) nicht nütze, baue ich parallele Strukturen auf (Großspeicher, Gaskraftwerke, Druckluftspeicher,...). Das ist ein volkswirtschaftlicher Schaden. Alles, was wir in Deutschland zuerst entwickeln und auch anwenden, schafft einen starken Heimatmarkt, auf den automatisch der Export fußt.

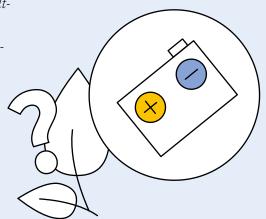
Dann wollen wir mal hoffen, dass wir 2026 in Deutschland auch endlich soweit sind – möglichst unkompliziert und unbürokratisch. Wir danken für das Gespräch!

Das Interview führten Steffi Könen und Kyra Schäfer

www.koalitionsvertrag2025.de

Marcus Fendt ist Geschäftsführer bei The Mobility House Energy und realisiert Projekte in den Bereichen intelligentes Laden und Vehicle-to-Grid (V2G).

Quellen & Infos:


www.sfv.de/wenn-e-autobatterien-netze-entlasten

5 Fragen zu nachhaltigeren Batteriespeichern

Interview — Kyra Schäfer, Stefanie Könen

Für eine vollständige Energieversorgung mit erneuerbaren Energieträgern sind Batteriespeicher unerlässlich. Gleichzeitig gibt es Kritik aufgrund ihrer umweltschädlichen Bestandteile und schlechter Arbeitsbedingungen beim Abbau der Ressourcen. Als Alternative stehen Redox-Flow-Batterien und Natrium-Ionen-Batterien im Raum. Wir haben mit Dr. Nils Reiners vom Fraunhofer ISE und Dr. Jens Peters von der Alcalá Universität in Madrid gesprochen und sie zum aktuellen Forschungsstand befragt.

Dr. Nils Reiners zu Organic Redox-Flow-Batterien

Organic Redox-Flow-Batterien gelten als besonders umweltfreundliche Speicherlösung, da sie statt seltener Erden oder Lithium auf organische Materialien und flüssige Elektrolyte setzen. Sie eignen sich vor allem für die langfristige Energiespeicherung in stationären Speichersystemen.

• Wir hören oft den Vorwurf, dass die Batterien zur Speicherung von erneuerbarem Strom genauso umweltschädlich seien wie fossile Energieträger. Was würden Sie antworten?

Die Energiewende ist ohne Speicher nicht zu schaffen. Der CO₂-Ausstoß für die Herstellung von Batterien wird weiter reduziert, je näher wir an das Ziel 100%-Erneuerbare herankommen. Auf nicht vermeidbare negative Umweltwirkungen können wir mit drei Strategien reagieren:

• Zunächst sollten so wenig Speicher wie möglich gebaut werden, aber keinesfalls weniger als notwendig. Der Bedarf an Speichern kann reduziert werden, wenn der Strombedarf insgesamt gesenkt wird. Zwar ist durch die Elektrifizierung der Sektoren Verkehr und Wärme ein steigender Strombedarf zu erwarten, aber eine intelligente Steuerung von Lasten sowie der Einsatz von E-Mobilen als Speicher, wirken sich mindernd auf den Bedarf aus.

- Weiterhin müssen die Lieferketten vollständig transparent gestaltet werden. Besonders Menschenrechtsverletzungen und illegale Naturzerstörungen müssen unbedingt verhindert werden. Es ist wünschenswert, dass sehr viele unterschiedliche Speichertechnologien zum Einsatz kommen, so dass eine einseitige Abhängigkeit von Ländern und Rohstoffen nicht entsteht.
- Zuletzt ist die Entwicklung von Speichertechnologien, die keine oder weniger kritische Rohstoffe enthalten, zentral. Dazu gehört auch das wichtige Argument der Reduktion der Abhängigkeit von undemokratischen Ländern. Die Forschung muss mit ausreichenden Mitteln versehen werden, um diese innovativen Systeme zu entwickeln und konkurrenzfähig zu machen. Es sollte darauf hingewirkt werden, dass die nachhaltigeren Technologien auch einen ökonomischen Vorteil haben. Dies kann entweder durch eine Einpreisung der Folgekosten für Umwelt und Mensch geschehen oder durch eine spezifische Förderlandschaft, zum Beispiel durch Förderung von Speichersystemen aus lokaler Produktion.

② Die Forschung fokussiert sich z. B. auf Redox-Flow-Batterie. Was sind deren technische Vorteile?

Organic-Redox-Flow-Speicher können eine Alternative zu den dominierenden Lithium-Ionen-Speichern sein. Die negativen Auswirkungen des Abbaus von Lithium, Cobalt oder Nickel werden reduziert und die Abhängigkeit von autoritären Staaten vermindert. Aktuell ist die am weitesten verbreitete Technologie im Bereich der Redox-Flow-Speicher die Vanadium-Redox-Flow-Batterie. Diese ist technisch bereits sehr ausgereift und bietet eine gute Grundlage für viele Anwendungen von Heimspeicher-Lösungen bis in den industriellen Betrieb im Megawatt-Bereich. Im Vergleich dazu befindet sich die organische Redox-Flow-Batterie noch in einem früheren Entwicklungsstadium, bietet jedoch das Potenzial, langfristig kostengünstigere und nachhaltigere Lösungen zu ermöglichen.

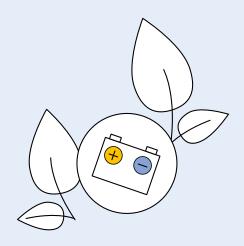
Technisch liegt der Vorteil von Redox-Flow-Speichern in der Möglichkeit, dass die Energie und die Leistung dieser Systeme vollständig und unabhängig skaliert werden können. Prinzipiell lassen sich dadurch Systeme mit sehr langen Speicherzeiten für einen niedrigen Preis realisieren, weil es günstig ist, die getrennten Energieeinheiten hinzuzufügen. Dadurch, dass der Elektrolyt, der die Ladungen trägt, in Kanistern in flüssiger Form aufbewahrt werden kann, kann dieser prinzipiell auch sehr gut wieder aufbereitet und recycelt werden. Das System ist sicher, weil der Elektrolyt nicht brennbar ist.

3 Wo sollen sie angewendet werden und welche Rolle werden sie für die Energiewende einnehmen?

Redox-Flow-Speicher können ihre Vorteile vor allem ausspielen, wenn es um Langzeitspeicherung geht, also Strom über mehrere Tage gespeichert bzw. wieder abgegeben werden soll. Für diese Anwendungen sind Lithium-Ionen Speicher zu teuer. Durch das Prinzip der unabhängigen Skalierung von Energie und Leistung (wie oben schon beschrieben) sind Langzeitspeicher prinzipiell günstig herzustellen.

Wie weit sind wir von einer flächendeckenden Anwendung entfernt und welche Herausforderungen stehen uns noch bevor?

Noch sind wir von einer flächendeckenden Anwendung von Redox-Flow-Speichern entfernt, da die Produktionskosten höher sind als bei etablierten Lithium-Ionen-Batterien. Bei den Redox-Flow-Speichern ist die Vanadium-Redox-Flow-Batterie (VRFB) technisch bereits sehr weit entwickelt und wird in ersten kommerziellen Anwendungen eingesetzt.

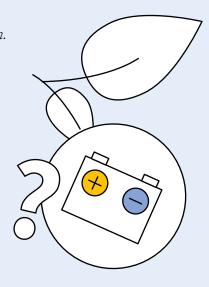

Technisch und ökologisch gibt es Herausforderungen: In den beiden Tanks sind unterschiedliche Oxidationsstufen von Vanadium in einer Lösung zu finden. Der Einsatz von Vanadium hat einige Nach-

teile. Es ist potenziell umweltschädlich und unterliegt starken Preisschwankungen. Die Ressource ist begrenzt auf wenige Förderländer, vor allem China, Russland, Südafrika und Brasilien.

Die Forschung sucht nach Möglichkeiten, den Vanadium Elektrolyt durch organische Materialien zu ersetzen und so diese negativen Aspekte zu vermeiden. Organische Redox-Flow-Batterien befinden sich jedoch noch in einem früheren Entwicklungsstadium. Erste Pilotanlagen für diese neue Generation laufen an Universitäten und bei spezialisierten Unternehmen. Dort wird an den bestehenden und großen Herausforderungen gearbeitet, z. B. an der Effizienzsteigerung, der Erhöhung der Energiedichte, der Skalierung von Pilotanlagen auf industrielle Fertigung bis hin zum Aufbau von Lieferketten für neue Materialien.

G Was ist Ihre Vision von den nächsten 5 Jahren in der Speicherentwicklung und -anwendung?

Wichtig bleibt, dass weiterhin Fördermittel für organische Redox-Flow Speicher bereitgestellt werden. Nur wenn erfolgreiche Beispiele entstehen, die die Funktionalität dieses Speichersystems erfolgreich demonstrieren können, besteht die Chance, dass es sich durchsetzt. Ein mögliches und durchaus realistisches Szenario ist, dass Redox-Flow-Speicher in 5–10 Jahren in bestimmten Nischen wie z. B. Windparks und Quartieren wirtschaftlich konkurrenzfähig sind.


Dr. Nils Reiners
Dr. Nils Reiners forscht als
Gruppenleiter für Angewandte Speichersysteme
am Fraunhofer-Institut für
Solare Energiesysteme (ISE)
an der Entwicklung von
Betriebsstrategien von
Speichersystemen.

Quellen & Infos www.sfv.de/fuenf-fragenzu-redox-flow-batterien

Dr. Jens Peters zu Natrium-Ionen-Batterien

Als weitere Alternative stehen Natrium-Ionen-Batterien im Raum. Sie speichern Energie auf Salzbasis, welches weltweit in großen Mengen günstig verfügbar ist. Sie eignen sich sowohl für mobile Anwendungen als auch für stationäre Energiespeicher. Dabei stellt sich die Frage: Könnten sie schneller marktreif sein und künftig im großen Stil zum Einsatz kommen?

• Was würden Sie auf den Vorwurf antworten, dass Batterien genauso umweltschädlich sind wie fossile Energieträger?

Ein klares "Nein". Es ist richtig, dass die Herstellung von Batterien material- und energieaufwändig ist, so wie viele Hightech-Produkte. Jedoch ist dies, wie bei allen erneuerbaren Energietechnologien, quasi eine Einmal-Investition, die sich zumindest energetisch und in Bezug auf CO₂-Emissionen über die Lebensdauer amortisiert. Im Gegensatz zu fossilen Energiequellen, wo jede erzeugte kWh mit substantiellen Emissionen einhergeht, ist der Betrieb von PV, Windkraft und Batterien selbst emissionsfrei. Als Daumenwert kann für die Herstellung einer 1 kWh Lithium-Ionen Batterie (LIB) ein CO₂-Fußabdruck von 100 kg angesetzt werden, mit abnehmender Tendenz.

Wenn so eine Batterie also 2000 Zyklen hält, entspricht ein Lade-/ Entladezykus 50g CO₂eq. Moderne Heimspeicher halten deutlich länger, bis zu 10.000 Zyklen, was dann nur noch 10g pro kWh wären. Dazu kommen noch die Emissionen des Stroms, ca. 90g CO₂eq/kWh für Solar in Deutschland, und 30g CO₂eq für Wind (ebenfalls abnehmende Tendenz durch zunehmende Dekarbonisierung der Produktion und Vorketten). Verglichen mit fossilen Energieträgern (Kohle 1000–1200g CO₂eq, Gas ca. 400–450 g CO₂eq) substantiell weniger. Aber ja, Energieverbrauch hat immer seine Auswirkungen, es gibt keine Wunder-Technologie. Also müssen wir immer auch unseren Verbrauch bzw. unser Konsumverhalten ansehen, denn die umweltfreundlichste Energie ist die nicht verbrauchte. Und auf dem Verzichtsauge sind wir gerne recht blind.

② Sie forschen zu nachhaltigen Energiespeichern, z.B. an Salz-/Natriumlonen Batterien. Wo werden diese eingesetzt & was sind deren Vorteile?

Zuallererst: Es gibt keine Technologie, die per se nachhaltig ist.

Jede Technologie, auch Energiespeicher oder PV-Paneele können auf unnachhaltige Weise bzw. im Übermaß eingesetzt werden. Ein Produkt kann nachhaltiger sein als ein anderes, aber um nachhaltig an sich zu sein, ist ein sehr breites Bild notwendig. Aber ja, wir forschen zum Thema Nachhaltigkeit und schauen uns neue Technologien in Hinsicht auf ihre Umweltauswirkungen an. Und dort finden sich Natrium-basierte Batterien (Na-Ion) die prinzipiell wie LIB funktionieren, aber statt dem knappen Lithium auf das überall verfügbare Natrium setzen, und oft auch keine seltenen (und teuren) Metalle wie Nickel oder sogar Kobalt benötigen. Da aber Natrium aufgrund seiner größeren Atommasse immer schwerer ist als Lithium, werden Na-Ion nie die Energiedichten von LIB erreichen. Das führt dazu, dass insgesamt, um die gleiche Speicherkapazität zu erlangen, größere Batterien notwendig sind, und somit mehr Materialeinsatz. Dies ist ein klassischer Trade-off: umweltfreundlichere Materialien, aber dafür mehr davon. Eine absolute Antwort gibt es dazu nicht, oft liegt die Antwort in der Kombination von Details: Wie lange soll die Batterie halten? Was für Leistung soll sie bringen? Insgesamt bestehen die Vorteile der Na-Ion Technologie aber in ihrer geringeren Abhängigkeit von Materialien (Natrium gibt es überall), sowie ihrer oft größeren Robustheit. Gerade ersteres ist im aktuell stark asiatisch dominierten Batteriemarkt sowie der hohen Abhängigkeit Europas von importieren Rohstoffen sowie den oft sehr problematischen Abbaubedingungen ein durchaus gewichtiges Argument.

Wie weit sind wir von einer flächendeckenden Anwendung entfernt? Was sind aktuelle Herausforderungen?

Flächendeckend ist ein großes Wort. Na-Ion wird nie die LIB komplett verdrängen, sondern koexistieren. So wie Hochleistungs-LIB mit Nickel-Mangan-Cobalt (NMC)-Kathoden und eher robuste LIB mit Lithium-Eisenphosphat (LFP)-Kathoden jede eigene Nischen bedienen, wird auch Na-Ion ihren Platz finden für Anwendungen, wo maximale Leistungsdichte nicht ganz so entscheidend ist, wie z. B. für stationäre (Heim-) Speichersysteme. Es gibt keine Onefits-all-Batterie, und jede Technologie hat ihre Berechtigung. Wie groß hinterher der Marktanteil von Na-Ion sein wird, ist sehr schwer vorherzusagen, da dies von den Preisen abhängt und damit auch von politischen Entscheidungen. Aktuell z. B. sind LFP-Batterien sehr günstig, und Na-Ion deswegen nur bedingt konkurrenzfähig, aber dies liegt zum Teil an Überkapazitäten auf dem chinesischen Markt und entspricht nicht unbedingt realen Preisen. Auch Subventionen oder Spekulationen auf den Rohstoffmärkten können hier eine Rolle spielen. Herausforderungen liegen deshalb v. a. in den Kosten und der Lebensdauer, denn am Ende sind Na-Ion und LIB austauschbare Technologien und konkurrieren über den Preis. Na-Ion ist eine noch neuere Technologie und Daten zu Lebensdauer noch knapp, aber nur wenn sie genauso haltbar sind wir LIB, sind sie eine ernste Konkurrenz.

Nachhaltigkeit, es zeigt sich dort eindeutig ein Umdenken und Bewusstseinswandel. Wir werden also sicher grünere und bewusster produzierte Batterien erleben. Technologisch sehe ich keine disruptiven Veränderungen auf kurze Sicht, Na-Ion wird eine Nische finden (wie groß hängt fundamental mit der Preisentwicklung von LIB bzw. der dafür benötigten Materialien zusammen, wenn LIB deutlich günstiger werden, bleibt wenig Raum für Na-Ion). Es wird sicher weiter Fortschritte geben bei Energiedichte und Leistung (z. B. Silizium-dotierte Anoden, Kombination verschiedener Kathodenmaterialien, etc.), aber basierend auf der existierenden Technologie. Die Eliminierung von PFAS ist noch ein interessantes Thema, die Suche nach alternativen Bindern mit gleicher Performance läuft aber noch. Und dann stehen noch Solid-State-Batterien im Raum, mit dem Versprechen höherer Energiedichten, aber bislang ist es vor allem bei Ankündigungen geblieben. Aber diese werden aus meiner Perspektive zuerst den High Performance Bereich bedienen, für stationäre Speicher sehe ich diese auf mittlere Sicht noch nicht.

Nein, ich glaube nicht, dass sich der Batteriemarkt dadurch stark verändern wird. Na-Ion-Batterien werden ihre Nische finden, und potentiell etwas Druck aus dem Thema Rohstoffe nehmen (wir haben dazu gerade eine Studie in Arbeit, in der wir zeigen, dass Na-Ion insofern Resilienz erzeugt, als Preissteigerungen bei LIB einfach zu einem erhöhten Durchdringung von Na-Ion führt und vice versa, und dafür die Kosten konstanter bleiben, weil eine Ausweichtechnologie zur Verfügung steht), aber wie oben beschrieben: Es ist kein Game-Changer. Andere Firmen haben aufgrund der niedrigen Kosten von LFP den Rückzug aus dem Na-Ion Geschäft angekündigt.

6 Was ist Ihre Vision von den nächsten 5 Jahren in der Speicherentwicklung und Speicheranwendung?

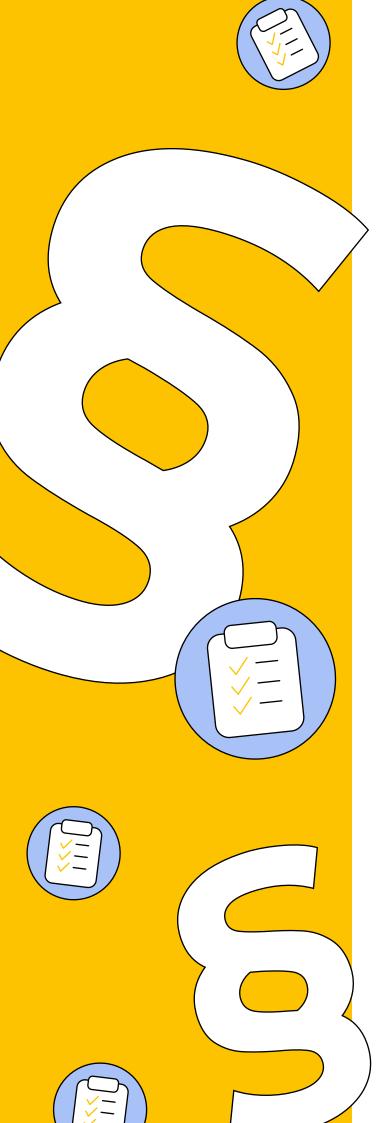
Es tut sich viel im Bereich der Nachhaltigkeit, auch angetrieben durch die Vorgaben der Kommission zum CO₂-Fußabdruck von Batterien. Hersteller arbeiten an ihrer Lieferkette und prüfen deren

[...] Grundlagen & mehr Infos

Zum Thema Batteriespeichertechnologien und Nachhaltigkeit im Kontext der Mobilitätswende haben wir in diesem Artikel zusammengestellt:

www.sfv.de/retrofitting-recyclingautos-und-batterien-aus-holz

Von Retrofitting, 100% Recycling-Autos und Batterien aus Holz


Dr. Jens Peters

ist Professor an der Alcalá Universität in Madrid und arbeitet an der Nachhaltigkeitsbewertung von Energiesystemen, mit Schwerpunkt auf Energiespeichersystemen und Batterien.

Quellen & Infos

www.sfv.de/fuenf-fragenzu-natrium-batterien

Schleppende, komplexe Rechtsregeln für Stromspeicher

Jeder weiß: Ohne leistungsfähige Stromspeicher ist die Energiewende nicht zu schaffen. Doch die passenden gesetzlichen Rahmenbedingungen lassen auf sich warten – und was es bereits gibt, ist oft sperrig, kompliziert und geht am Kern des Problems vorbei. Auch viele Netzbetreiber geraten an ihre Grenzen, sobald es um größere Speicherprojekte geht.

— Dr. Christina Bönning-Huber

Zahlreiche Themen rund um Stromspeicher

Wer einen Stromspeicher bauen oder betreiben will, steht schnell vor einer Reihe rechtlicher Fragen. Zunächst geht es um die grundlegende Entscheidung: Soll der Speicher gekauft oder gemietet werden? Wer kümmert sich um Wartung und Service? Solche Punkte werden in der Regel in Verträgen zwischen den Beteiligten festgelegt und die sollten immer sorgfältig gelesen werden. Denn auch in diesem Bereich sind unseriöse Anbieter unterwegs, die viel Geld verlangen, aber rechtlich wenig Verbindliches liefern. Ebenso muss geklärt werden, welche Rolle man selbst übernehmen möchte: Die Möglichkeiten sind vielfältig, und rechtlich ist fast alles machbar. Die Verträge richten sich nach dem Bürgerlichen Gesetzbuch (BGB) und können frei gestaltet werden, solange es sich nicht um vorformulierte Standardverträge handelt, die dann zusätzlich den strengen Vorgaben des AGB-Rechts (§§ 305 ff. BGB) unterliegen. Die unterschiedlichen Vertragskonstellationen sollen vor allem die Vielfalt der Möglichkeiten aufzeigen.

Im Fokus dieses Beitrages stehen jedoch auch andere Fragen: Anlageninvestoren stehen häufig auch grundsätzlichen Fragestellungen gegenüber. Hier geht es z. B. darum, ob es einen Anspruch auf Netzanschluss gibt. Wie ändert sich die Situation, wenn der Speicher nicht nur mit Grünstrom, sondern auch mit Graustrom gefüllt wird? Wie ist der Vergütungsanspruch für Strom aus dem Speicher geregelt, der nach der Speicherung ins öffentliche Netz eingespeist wird? Bei größeren Speichern oder Anlagen außerhalb von Gebäuden kommen zudem baurechtliche Fragen hinzu, die hier aber nicht behandelt werden sollen. Im Folgenden möchte ich mich folgenden Themen widmen: Einerseits dem Netzanschlussanspruch, einschließlich des Sonderthemas Baukostenzuschuss (BKZ) und andererseits dem Vergütungsanspruch für eingespeisten, zwischengespeicherten Strom. Wichtig dabei ist die Unterscheidung, ob im Speicher ausschließlich Grünstrom oder auch Graustrom

gelagert wird, denn das Gesetz macht hier klare Unterschiede. Aber beginnen wir mit dem Anspruch auf Netzanschluss.

Anspruch auf Netzanschluss

1 Ist ein Stromspeicher eine eigenständige Anlage?

Einige Netzbetreiber berufen sich darauf, dass der Anspruch auf einen Netzanschluss von Stromspeichern (sofern es sich um einen reinen Grünstromspeicher handelt) sich auch nach § 8 EEG (Erneuerbare-Energien-Gesetz) richtet, in dem der Anschluss von EE-Anlagen geregelt ist. Ihre Begründung: Ein Stromspeicher sei eine eigenständige Anlage. Tatsächlich definiert der Gesetzgeber in § 3 Nr. 1 EEG eine Anlage auch als Einrichtung, die zwischengespeicherte Energie aus erneuerbaren Energien oder Grubengas aufnehmen und in elektrische Energie umwandeln kann. Ob nun der Speicher die aufgenommene Energie umwandelt, scheinen selbst Techniker nicht einheitlich anzunehmen.. Zudem spricht § 8 Abs. 1 EEG zum Netzanschluss ausdrücklich von Anlagen zur Erzeugung von Strom. Auch ob dies bei Speichern zutrifft, wird nicht einheitlich beantwortet. Geht man davon aus, dann richtet sich der Anschlussanspruch wie bei einer PV-Anlage auch nach § 8 EEG, ohne das es Besonderheiten gibt. Die Situation ist aber letztendlich auch nicht schlechter, wenn man den Speicher nicht als so eine Anlage begreift, oder wenn es ein Speicher ist, der nicht nur mit Grünstrom geladen wird.

2 Wo ist der Anspruch auf den Anschluss eines Stromspeichers geregelt?

Der maßgebliche Anspruch auf Netzanschluss ergibt sich somit entweder aus § 8 EEG oder aus § 17 EnWG (Energiewirtschaftsgesetz). Nach Absatz 1 Satz 1 sind Netzbetreiber verpflichtet, Speicheranlagen zu Bedingungen anzuschließen, die technisch und wirtschaftlich angemessen, diskriminierungsfrei, transparent und nicht ungünstiger sind als bei vergleichbaren Fällen innerhalb des eigenen Unternehmens oder gegenüber verbundenen bzw. assoziierten Unternehmen. Für Speicherbetreiber:innen ist das zunächst eine gute Nachricht: Das Gesetz stellt klar, dass ein Anspruch besteht und dass sie sich auf Wettbewerbsgleichheit berufen können, auch wenn im Einzelfall über die konkreten Bedingungen zu verhandeln ist. Offen bleibt jedoch eine entscheidende Frage: Können technische Gründe den Anschluss verhindern? Viele Netzbetreiber sagen "ja", mit Argumenten wie "Das Netz ist voll." oder "Das Netz hält die Belastung nicht aus.". Dazu lohnt ein Blick in § 17 Abs. 2 EnWG, denn dort heißt es:

"Betreiber von Energieversorgungsnetzen können einen Netzanschluss nach Absatz 1 Satz 1 verweigern, soweit sie nachweisen, dass ihnen die Gewährung des Netzanschlusses aus betriebsbedingten oder sonstigen wirtschaftlichen oder technischen Gründen unter Berücksichtigung des Zwecks des § 1 nicht möglich oder nicht zumutbar ist. Die Ablehnung ist in Textform zu begründen. Auf Verlangen der beantragenden Partei muss die Begründung im Falle eines Kapazitätsmangels auch aussagekräftige Informationen darüber enthalten, welche Maßnahmen und damit verbundene Kosten zum Ausbau des Netzes im Einzelnen erforderlich wären, um den Netzanschluss durchzuführen; die Begründung kann nachgefordert werden. Für die Begründung nach Satz 3 kann ein Entgelt, das die Hälfte der entstandenen Kosten nicht überschreiten darf, verlangt werden, sofern auf die Entstehung von Kosten zuvor hingewiesen worden ist."

Das ist für Speicherbetreiber eine recht komfortable Ausgangslage: Der Gesetzgeber geht vom Grundsatz eines Anschlussanspruchs aus. Nur wenn einer der gesetzlich genannten Gründe vorliegt, darf der Netzbetreiber ablehnen und auch dann nicht einfach pauschal mit einem "nein". Eine nicht begründete Ablehnung verstößt bereits gegen das Gesetz. Empfehlenswert ist daher, das Verlangen nach einer schriftlichen Begründung gleich mit dem Antrag auf Netzanschluss zu stellen. Ein kleiner Wermutstropfen: Die 50-%-Kostenbeteiligung an der Auskunft, sofern der Netzbetreiber sie vorab angekündigt hat. Dennoch raten wir, nicht nur eine Begründung zu verlangen, sondern auch gleich die Vorlage einer flexiblen Netzanschlussvereinbarung anzufordern. § 17 Abs. 2b EnWG ermöglicht es, sich auf eine zeitlich oder mengenmäßig eingeschränkte Einspeicherung zu verständigen, etwa nur zu bestimmten Tageszeiten. Das ist bei Anwendung des EEG auch nicht anders. Die Netzanschlussvereinbarung zu fordern, heißt nicht, dass wir in jedem Fall auch den Abschluss empfehlen. Das sollte dann im jeweiligen Einzelfall geprüft werden, wenn ohne die Vereinbarung der Anschlussanspruch abgelehnt würde.

3 Grünstromspeicher

Die technische Eignung des Verknüpfungspunktes hängt auch von der geplanten Nutzung des Speichers ab. Ein reiner Grünstromspeicher, der PV-Überschüsse aufnimmt, belastet das Netz meist nicht zusätzlich. Hat beispielsweise ein PV-Park mit 10 MW Anschlussleistung aus Kapazitätsengpässen im Netz nur begrenzte Einspeisemöglichkeiten, wird die Integration eines solchen Speichers in der Regel unkompliziert sein. Bei Graustromspeichern hingegen sind Netzengpässe wahrscheinlicher. Vereinbarungen können helfen, Hindernisse auszuräumen, etwa indem der Betreiber:innen darauf verzichtet, in der Mittagszeit im Sommer gleichzeitig mit PV-Anlage und Speicher einzuspeisen. Allerdings sollte man darauf achten, sich nicht zu sehr einzuschränken, damit lukrative Einspeisezeiten nicht verloren gehen. Jede Einschränkung kann langfristig Wettbewerbsnachteile bedeuten, vor allem wenn andere Betreiber flexiblere Bedingungen aushandeln. Wer sich bei dem Netzanschluss auf das EEG stützt, der kann bei Anlagen bis 30 kW in der Summe sich ohnehin auf die Privilegierung des § 8 Abs. 1 EEG berufen. Damit wird eine PVA von zB 15 kW und ein Speicher von 10 kW am Hausanschluss anzuschließen sein.

Sonderthema Baukostenzuschuss (BKZ)

Ein Baukostenzuschuss – also ein finanzieller Beitrag des Speicherund/oder PV-Betreibers für Netzausbaukosten – ist grundsätzlich zulässig. Das hat auch der *BKZ (Bundesgerichtshof)* am 15. Juli 2025 (Az. EnVR 1/24) bestätigt. Es verstößt also nicht gegen § 17 EnWG (Energieversorgungsrecht), einen BKZ zu fordern. Das bedeutet jedoch nicht, dass er in jedem Fall fällig wird. Bei Leistungsanforderungen bis 30 kW darf kein BKZ verlangt werden (§ 11 Abs. 3 NAV). Grünstromspeicher ohne eigene Leistungsanforderung sind ebenfalls befreit. Bei Großspeichern kann zusätzlich die Verordnung zur Regelung des Netzanschlusses von Anlagen zur Erzeugung von elektrischer Energie (KraftNAV) eine Rolle spielen – dies sei hier nur der Vollständigkeit halber erwähnt.

Vergütungsanspruch

Beim Vergütungsanspruch gibt es grundsätzlich zwei Wege: Entweder wird der Strom aus dem Speicher im Rahmen eines Direktvermarktungsvertrages vergütet – unabhängig vom EEG –, oder es greift die Regelung des § 19 EEG. Letzteres ist vor allem relevant, wenn ein Anlagenbetreiber, etwa einer PV-Anlage, für den eingespeisten und zuvor zwischengespeicherten Strom denselben EEG-Vergütungssatz wie für den Direktstrom aus der PV erhalten möchte.

Grünstromspeicher ohne Besonderheiten

Für Betreiber:innen eines reinen Grünstromspeichers gilt die sogenannte "Ausschließlichkeitsoption" nach § 19 Abs. 3a EEG. Sie stellt klar: Wird ausschließlich erneuerbarer Strom gespeichert, gibt es keine Abzüge oder Einschränkungen bei der EEG-Vergütung.

2 Gemischte Speicherung – die Abgrenzungsoption

Komplexer wird es, wenn im Speicher sowohl PV-Strom als auch Strom aus anderen Quellen (Graustrom) landet. In diesem Fall erlaubt die "Abgrenzungsoption" eine anteilige EEG-Vergütung – allerdings nur für den Teil des gespeicherten Stroms, der tatsächlich aus der PV stammt. Diese Möglichkeit war früher ausgeschlossen. Die genaue Berechnung soll die Bundesnetzagentur regeln, entsprechende Vorgaben fehlen jedoch bislang. Das bremst die Nutzung solcher Mischspeicher aus, ist derzeit aber vor allem bei Kleinspeichern kein großes Marktthema.

Fazit: Aufgrund der fehlenden Vorgaben von der Bundesnetzagentur sind vom Gesetzgeber angedachte Vorteile noch nicht
nutzbar. Es geht in die richtige Richtung, aber die Anwendung der
gesetzlichen Regelungen ist noch sperrig und zu störanfällig.
Außerdem sind die wirtschaftlichen Anreize zu gering, sowohl für
den Anlagenbetreiber einer kleineren PV-Anlage mit dem Hausstromspeicher als auch für größere Stromspeicher.

3 Privilegierung für Speicher aus kleinen PV-Anlagen

§ 19 Abs. 3c EEG bringt für kleinere PV-Anlagen eine zusätzliche Erleichterung, wenn sie folgende Bedingungen erfüllen:

- Der Strom hinter dem Zähler ausschließlich durch PV erzeugt wird.
- PV-Anlage und Speicher denselben Betreiber haben.
- Die installierte PV-Leistung maximal 30 kW beträgt.

Unter diesen Voraussetzungen darf der Speicher auch teilweise mit Graustrom geladen werden. Der Anspruch auf EEG-Vergütung bleibt bestehen, allerdings begrenzt auf maximal 500 kWh pro installiertem kW PV-Leistung. Eine 10-kW-PV-Anlage könnte so jährlich bis zu 5.000 kWh gefördert einspeisen. Grundsätzlich ist das eine sehr attraktive Regelung. Allerdings fehlen auch hier noch die notwendigen Vorgaben der Bundesnetzagentur, wie der förderfähige Anteil unterhalb des Maximalwertes konkret zu berechnen ist.

Fazit

Die Rechtslage für Stromspeicher bleibt komplex, fragmentiert und in vielen Punkten unbefriedigend. Zwar besteht ein grundsätzlicher Anspruch auf Netzanschluss, doch nutzen Netzbetreiber die Spielräume häufig, um Projekte durch technische oder wirtschaftliche Argumente auszubremsen. Auch beim Baukostenzuschuss oder bei Vergütungsfragen zeigt sich: Der Gesetzgeber hat zwar wichtige Weichen gestellt, doch es fehlen klare und praxistaugliche Vorgaben.

Für Betreiber:innen bedeutet das: Wer Speicherprojekte plant, muss sich auf Abstimmungen mit Netzbetreibern einstellen, vertragliche Details sorgfältig prüfen und Spielräume konsequent ausschöpfen. Positiv ist, dass der rechtliche Rahmen immerhin erste Privilegierungen für kleinere PV-Anlagen sowie Öffnungen für Mischspeicher vorsieht. Doch ohne präzisere Vorgaben der Bundesnetzagentur und stärkere wirtschaftliche Anreize bleibt das Potenzial von Speichern weit hinter dem zurück, was für die Energiewende dringend gebraucht wird.

[...] mehr Info

Stromspeicher & Recht:

- Netzanschluss: § 19 EnWG i.V.m. § 8 (1) EEG
- flexibler Netzanschluss: § 17 Abs. 2b EnWG
- Vergütungsanspruch:§ 19 (3a) EEG
- Speicher-Privilegierung:§ 19 (3c) EEG

Dr. Christina Bönning-Huber Rechtsanwältin mit Schwerpunkt erneuerbare Energien und Energiekonzepte in Mecklenburg. Sie ist energiepolitisch engagiert und seit 1999 Mitglied im SFV.

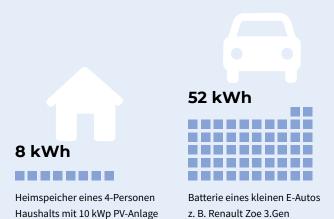
Quellen & Infos www.sfv.de/rechtsregelnstromspeicher

Zahlen & Fakten zur Stromspeichern

Stand: September 2025

✓ | Installierte stationäre Stromspeicherkapazität: Gesamt: 20,9 GWh (in Gigawattstunden):

2,92 GWh Großspeicher


0,45 GWhGewerbespeicher

17,53 GWh (PV-) Heimspeicher

(in kWh)

✓ | Speicherkapazitäten Heim vs. Auto

✓ | Preisentwicklung Speicher (in €/kWh) für

104 GWh

Speicherkapazitäten werden laut Fraunhofer Institut ISE bis 2030 für die Energiewende und Netzstabilisierung benötigt •

115 GWh

Speicherkapazitäten fahren bzw. stehen bereits in deutschen Elektroautos rum. Obwohl ca. 10 % technisch imstande wären, dürfen sie aktuell nicht als Stromspeicher verwendet werden, sondern lediglich für die individuelle Mobilität. Bidirektionales Laden soll das ändern.

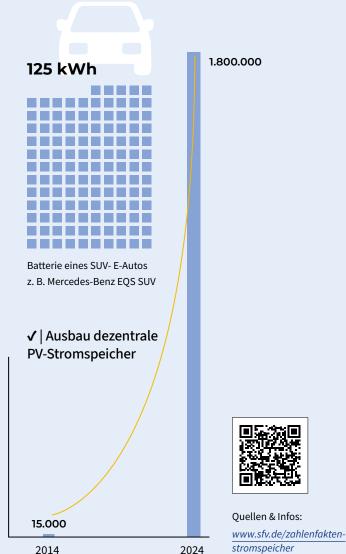


Abb 1 – Anlieferung eines Quartierspeicher-Containers in einem Neubaugebiet • Foto: ads-tec Energy

Quartierspeicher-Projekt in Bergneustadt vor einer Weggabelung

Gemeinsam erzeugen, speichern und nutzen: Das Neubauquartier in Bergneustadt sollte zeigen, wie die Energiewende vor Ort gelingen kann – mit Photovoltaik, Quartierspeicher und klimafreundlicher Technik für 36 Einfamilienhäuser. Doch ein aktuelles Gerichtsurteil bringt das innovative Projekt nun ins Wanken.

— Jonas Quernheim

In Bergneustadt entsteht ein innovatives Neubauquartier, das beim Klimaschutz Maßstäbe setzen soll. Über die Grundidee berichtete Herr Schäfer von der *Eikamp GbR* bereits in der März-Ausgabe des Solarbriefs: 36 Einfamilienhäuser, gebaut aus nachhaltigen Materialien, mit hohem Dämmstandard und moderner Technik, jeweils ausgestattet mit einer 10 kWp-Photovoltaikanlage, einer Wärmepumpe und einer Wallbox. Ziel ist es, einen möglichst großen Teil des Energiebedarfs für Haushaltsstrom, Wärme und Mobilität direkt aus erneuerbaren Quellen vor Ort zu decken und so einen hohen Autarkiegrad zu erreichen.

Genau hier setzt das Forschungsprojekt "Quartierspeicher für eine Klimaschutzsiedlung" an, das von der Technischen Hochschule Köln geleitet wird. Die Deutsche Bundesstiftung Umwelt fördert die wissenschaftliche Begleitforschung. Die Umsetzung selbst soll wirtschaftlich tragfähig sein, damit das Konzept künftig ohne Fördermittel reproduziert werden kann. Herzstück ist ein zentraler Quartierspeicher, den sich alle Bewohner:innen teilen. Statt 36 einzelner Akkus ist ein großer gemeinsamer Speicher geplant. Berechnungen zeigen, dass sich durch dieses gemeinschaftliche Modell die insgesamt benötigte Speicherkapazität um bis zu 68 Prozent reduzieren lässt, ohne den Autarkiegrad zu verringern.

Die neue Rechtslage könnte dazu führen, dass das Quartiersnetz als öffentliches Netz eingestuft wird. Damit würden auf jede im Quartier verbrauchte Kilowattstunde PV- oder Speicherstrom nach aktuellen Schätzungen rund 12,5 Cent Abgaben fällig.

Das senkt sowohl den Ressourcenverbrauch als auch die Kosten. Die Umsetzung sollte für die Bewohner:innen möglichst unkompliziert sein und keinen zusätzlichen Aufwand verursachen. Geplant war, dass die Stadtwerke Solingen das Quartiersnetz, den zentralen Speicher und die PV-Anlagen nicht nur errichten, sondern auch finanzieren, betreiben und warten. Damit entfiele für die künftigen Eigentümer:innen der gesamte Planungs- und Investitionsaufwand für ein eigenes, nachhaltiges Energiekonzept. Sie würden ein schlüsselfertiges System erhalten, das erneuerbare Energie direkt vor Ort erzeugt, speichert und zum Verbrauch bereitstellt. Juristisch sollte dieses System als Kundenanlage eingestuft werden, sodass innerhalb des Quartiers keine Netzentgelte, Umlagen oder Abgaben angefallen wären. Lediglich für Strom, der aus dem öffentlichen Netz bezogen wird, hätten diese Kosten entrichtet werden müssen. Unter diesen Bedingungen ließ sich ein Speicher mit einer Kapazität von rund 500 Kilowattstunden wirtschaftlich betreiben. Der Autarkiegrad des gesamten Systems läge bei knapp 70 Prozent. Das würde bedeuten, dass fast sieben von zehn Kilowattstunden, die im Quartier für Haushaltsstrom, Heizung und Mobilität benötigt werden, aus eigener erneuerbarer Erzeugung stammen würden - ein Leuchtturmprojekt für nachhaltige Neubaugebiete.

Doch Mitte Mai änderte der Bundesgerichtshof die bisherige Auslegung des Begriffs "Kundenanlage". Die neue Rechtslage könnte dazu führen, dass das Quartiersnetz als öffentliches Netz eingestuft wird. Damit würden auf jede im Quartier verbrauchte Kilowattstunde PV- oder Speicherstrom nach aktuellen Schätzungen rund 12,5 Cent Abgaben fällig. Das hätte zur Folge, dass der Betrieb des Speichers wirtschaftlich nicht mehr tragbar wäre. Zwar könnten die PV-Anlagen weiterhin wirtschaftlich betrieben werden, aber ohne Speicher halbiert sich der Autarkiegrad auf unter 35 Prozent.

Das Ziel bleibt unverändert: ein Neubauquartier, das einen hohen Anteil seines Energiebedarfs für Strom, Wärme und Mobilität aus lokal erzeugten erneuerbaren Energien decken kann, wirtschaftlich tragfähig und zukunftsorientiert. Daher prüfen wir derzeit alternative Konzepte. Eine Möglichkeit wäre, die PV-Anlagen nicht direkt am Quartiersnetz anzuschließen, sondern wie bei

Privatanlagen hinter dem Zähler innerhalb jedes Hauses. Das würde zwar den Mess- und Abrechnungsaufwand erhöhen, aber zumindest für den Direktverbrauch von PV-Strom könnten Netzentgelte und Umlagen entfallen. In diesem Fall könnte ein kleinerer Quartierspeicher mit etwa 250 Kilowattstunden wirtschaftlich betrieben werden, was einem Autarkiegrad von rund 57 Prozent entspräche. Ob dieses Modell mit der neuen Rechtsauslegung vereinbar ist, wird aktuell durch unseren Projektpartner Dr. Markus Behnisch von der Berliner Umweltrechtskanzlei Gaßner, Groth, Siederer & Coll. geprüft.

Das Projekt steht damit an einem entscheidenden Punkt. Gelingt es, die rechtlichen Hürden zu überwinden, könnte das Quartier in Bergneustadt zeigen, wie nachhaltige Neubausiedlungen große Teile ihres Energiebedarfs selbst decken und dabei Ressourcen schonen, Kosten senken und die Energiewende vor Ort sichtbar machen.

Jonas Quernheim ist wissenschaftlicher Mitarbeiter am Cologne Institute for Renewable Energy (CIRE) der TH Köln. Er beschäftigt sich mit der gemeinschaftlichen Nutzung von erneuerbaren Energien und Energiemanagement.

Quellen & Infos <u>www.sfv.de/</u> <u>quartierspeicher-</u> <u>bergneustadt-2025</u>

Abb1 — © Pecan Development •

Klimafolgenanpassung mit Energiespeichern im Dockyard Waterfront Office in Berlin

Hohe Wärmelasten im Sommer und ein erheblicher Wärmebedarf im Winter – saisonale Wärmespeicherung schafft Synergien und ermöglicht selbst in verdichteten Bestandsquartieren, wie im Berliner Dockyard, eine effiziente Gebäudetemperierung auf Basis lokaler Energiequellen. Gleichzeitig führt sie zur Entlastung des Stadtklimas bei sommerlicher Hitze.

Text — Michael Viernickel & Fabian Eichelbaum

Klimafolgenanpassung und Gebäudetemperierung

Die fortschreitende Erderwärmung erfordert nicht nur Maßnahmen zur Reduktion von Treibhausgasen, sondern auch einen wirksamen Hitzeschutz. Hitzewellen führen in Deutschland jährlich zu mehreren tausend Todesfällen und stellen damit die gravierendste klimabedingte Gesundheitsgefahr dar. Die Kühlung von Gebäuden gewinnt daher zunehmend an Bedeutung. Herkömmliche Kompressionskälteanlagen leiten jedoch nicht nur Wärme aus dem Gebäude in die Umgebung ab, sondern wandeln auch einen erheblichen Teil der eingesetzten elektrischen Energie in zusätzliche Abwärme um - meist etwa 30 % und mehr. In ohnehin überhitzten Städten ("Urban Heat Island") verschärft sich dadurch das Hitzeproblem und es kommt zu unerwünschten Schallemissionen der Luft-Wärmetauschern (sog. Rückkühler). Um das zu vermeiden wurde im Dockyard, einem Bürogebäude mit 32.000 m² Nutzfläche und großflächiger Verglasung, ein ganzheitliches Konzept für Energieversorgung und sommerlichen Wärmeschutz umgesetzt.

Energieversorgung und Treibhausgasemissionen

Zur Minimierung der CO₂-Emissionen wurde der Baukörper in Holzhybridbauweise errichtet, um den Einsatz grauer Energie zu reduzieren. Die Energieversorgung wurde konsequent auf Umweltenergie ausgerichtet. Fachleute sind sich weitgehend einig, dass die künftige Energieversorgung elektrisch ist und Wärmepumpen eine zentrale Rolle für die Wärmeversorgung spielen werden. Es gibt drei Großwärmepumpen mit Ammoniak und 16 Luftwärmepumpen mit Propangas. Die Dachflächen wurden mit Photovoltaik-Thermie-Kollektoren (PVT) belegt. Eine rein photovoltaische Nutzung würde nur 20 - 25 % der Solarenergie erschließen und keine Möglichkeit bieten, Wärme zu gewinnen oder abzuführen. Neben der Stromerzeugung durch PV ist daher auch die Bereitstellung von Wärme für die Wärmepumpen entscheidend. Um den begrenzten Platz optimal zu nutzen, kommen kombinierte PVT-Kollektoren zum Einsatz, die dank ihrer lamellierten Bauform auch bei diffuser Strahlung oder nachts einen effizienten Wärmeübergang zur Luft ermöglichen.

Mit verbesserten Dämmstandards, großzügiger Verglasung und hohen internen Wärmelasten rückt die Deckung des Kühlbedarfs immer stärker in den Fokus. Die Abfuhr von Wärme im Sommer erfordert eine "Wärmesenke", also einen Ort, der Wärme aufnehmen kann. Da die Außenluft im Hochsommer oft zu warm ist, werden Kältemaschinen benötigt, um über einen Zwischenkreislauf das Temperaturniveau der den Räumen entzogenen Wärme zu erhöhen, damit sie an die Außenluft abgegeben werden kann. Diese sogenannte "aktive Kühlung" ist inzwischen genehmigungsrechtlich stark eingeschränkt z. B. auf Grund von Schallschutzvorgaben. Gefragt sind Wärmesenken, die unterhalb der Raumtemperatur liegen und so eine "passive Kühlung" ermöglichen.

Speicher als Schlüssel der Wärmewende und Klimafolgenanpassung

Oberflächennahe Geothermie oder das Grundwasser sind in der Regel bevorzugte Optionen, um Wärme im Bereich von 0 - 20 °C aufzunehmen, abzugeben und über Monate zu speichern. Am Standort des Dockyard war eine thermische Grundwassernutzung aus statischen Gründen nicht möglich. Ein Erdsondenspeicher hätte aufgrund der erforderlichen Wasserhaltung und der Vielzahl an Bohrungen einen erheblichen Aufwand bedeutet. Stattdessen wurde die Aktivierung erdberührender Gründungsbauteile gewählt: In die 4.000 m² große Bodenplatte und 87 Bohrpfähle wurden wasserführende Kunststoffrohre einbetoniert, sodass die Bauteile als Wärmetauscher dienen. Durch den direkten Kontakt mit dem Grundwasser wird deren Speicherkapazität deutlich erhöht. Allerdings führt trotz dieser thermischen Anbindung die Aufladung dieser Strukturen bereits innerhalb weniger Tage zu Temperaturen, die eine direkte "passive" Kühlung nicht mehr zulassen. Die eingetragene Wärme muss daher möglichst im Tag-Nacht-Rhythmus wieder abgeführt werden.

Solartechnologie und Kühlung

Auch wenn nachts die Lufttemperaturen oft über 20 °C liegen und somit keine Wärme aus dem Bauteilkreislauf an die Umgebung abgeführt werden kann, ermöglichen klare Nächte dennoch eine effektive Abstrahlung von Wärme in den Weltraum - ohne die Stadtatmosphäre zusätzlich aufzuheizen (radiative Kühlung, siehe Infokasten). Daher wurde ein Wechselbetrieb projektiert: Tagsüber wird Wärme aus den Deckenkühlplatten der Innenräume und dem Lüftungssystem des Gebäudes in die Bauteilaktivierung übertragen, wodurch sich die Bauteile erwärmen. Nachts nimmt der Solekreis der PVT-Kollektoren diese Wärme aus den Gründungsbauteilen auf und gibt sie über die PV-Vorderseite an den kalten Nachthimmel ab. Während Solarthermie üblicherweise zur Wärmegewinnung eingesetzt wird, ist ihr direkter Nutzen in gut gedämmten Gebäuden ohne Trinkwarmwasserbedarf als Heizungsunterstützung begrenzt. Der Einsatz von PVT-Modulen mit unisolierten, lamellierten Luftwärmetauschern eröffnet jedoch die Möglichkeit, aktiv Wärme abzugeben und dem Gebäude zu entziehen - selbst ohne solare Einstrahlung und ohne störende Lüftergeräusche.

Abb 2 — Aktivierte Bohrpfähle • Foto: Tobias Schulze

Abb 3 — Tunneltrogbauwerk • Foto: Sergey Kleptcha

 ${\bf Abb}\, {\bf 4} - {\sf Aktivierte}\, {\sf Bodenplatte}\, {\bf \cdot}\, {\sf Foto} {\sf :Sergey}\, {\sf Kleptcha}$

Radiative Kühlung?

PVT-Module können Wärme im mittleren Infrarotbereich abstrahlen – genau in dem Bereich, in dem die Atmosphäre besonders durchlässig ist. So wird überschüssige Wärme aus dem Modul direkt als Infrarotstrahlung ins Weltall abgeführt. Dieser Effekt wird auch als passive Kühlung bezeichnet.

 ${\bf Abb\,5} - {\bf Insgesamt\,520\,PVT} \cdot {\bf und\,140\,PV} \cdot {\bf Module\,wurden\,auf\,dem\,Dockyard-Gebäude\,installiert.} \bullet {\bf Foto:\,eZeit\,GmbH}$

Eisspeicher

Da in diesem Projekt deutlich höhere Kühlleistungen benötigt werden, als die Bauteilaktivierung allein bereitstellen kann, wurde ein ehemaliges Trogbauwerk einer Bahntunneleinfahrt freigelegt, abgedichtet, gedeckelt und als Eisspeicher mit 1,5 Mio. Litern Volumen umgenutzt. Während des Wärmepumpen-Heizbetriebs bildet sich zunehmend Eis auf den Wärmetauscherplatten. Die bei der Kristallisation freigesetzte Wärme erhöht die nutzbare Wärmennenge erheblich – sie entspricht einer Abkühlung flüssigen Wassers um 80 Kelvin. Dadurch steht im Winter gebildetes Eis im Sommer zur Gebäudekühlung zur Verfügung und schafft einen saisonalen Synergieeffekt.

Gebäude- und Anlagensimulationen zeigen, dass die solaren Gewinne aus dem Gebäude (z.B. über die Fenster) bereits ausreichen, um das maximal mögliche Eis vollständig aufzutauen. Eine zusätzliche Nutzung der PVT-Kollektoren zur Wärmegewinnung ist unter aktuellen und zu erwartenden Wetterbedingungen daher voraussichtlich nicht erforderlich, kann aber als wertvolle Redundanz dienen. Die thermische Solartechnik übernimmt hier vor allem die Funktion einer stadtklimaschonenden Wärmeabfuhr – sie vermeidet die Aufheizung der Umgebung und Geräuschbelastung.

Solarpotenziale und das Gebäude als Kollektor

Konventionelle Dachflächenauswertungen greifen bei der Bewertung solarer Wärmepotenziale oft zu kurz, da die abzuführenden Wärmemengen aus dem Gebäude meist deutlich höher sind als die Dachfläche allein erwarten lässt. Diese Wärme kann über Luftführung oder Flächenelemente im Gebäude gewonnen werden, erreicht jedoch selten Temperaturen über 20 °C.

Eine Nachrüstung von Abluftsystemen zur Wärmeabführung lässt sich übrigens auch im Gebäudebestand realisieren, die zugleich die Lufthygiene der Innenräume verbessern. Obwohl eine direkte Nutzung dieser (Ab-)wärme aufgrund der niedrigen Temperaturen meist ausscheidet, bieten sich diese Quellen ideal zur Speisung von Wärmepumpen und zur saisonalen thermischen Regeneration geother-

Hitzewellen führen in Deutschland jährlich zu mehreren tausend Todesfällen und stellen damit die gravierendste klimabedingte Gesundheitsgefahr dar. Die Kühlung von Gebäuden gewinnt daher zunehmend an Bedeutung.

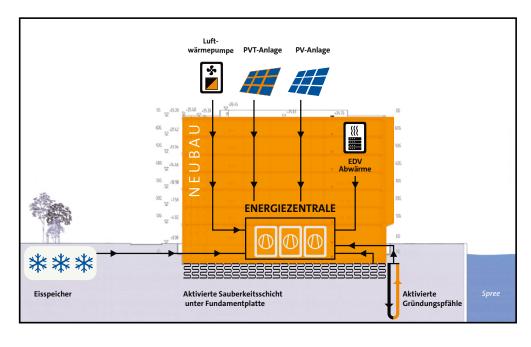


Abb 6 — Anlagenschema: © eZeit Ingenieure GmbH. © HG-Bild: Tchoban Voss Architekten

mischer Anlagen an – ein Ansatz, um auch im verdichteten Bestand Wärmepumpen hoher Leistung effizient einzusetzen.

Die hier realisierte Vielfalt an Aggregaten und Speichern ermöglicht zahlreiche Kombinationsmöglichkeiten, deren Inbetriebnahme nicht nur der Bedarfsdeckung dient. Die Leistungscharakteristik der Speicher, die PVT-Wärmeabstrahlleistung sowie die Gebäudeheiz- und kühllast in Abhängigkeit von Wetterparametern und Nutzertemperaturen müssen im laufenden Betrieb kontinuierlich erlernt werden. Aufgrund der Komplexität der resultierenden Daten, lässt sich dies am besten mit Methoden der Mustererkennung abbilden. Auf Basis dieser Werte wird entschieden, wie die Ladezustände der aktivierten Bauteile und des Eisspeichers sowohl kurzfristig als auch im Jahresverlauf gestaltet werden müssen, um alle zu erwartenden Betriebsfälle abzudecken. Die verbleibenden Freiheitsgrade ermöglichen eine Optimierung hinsichtlich der CO₂-Emissionen sowie der Wirtschaftlichkeit. Auch das Vorhalten von Reserveleistung als Parameter für die Betriebssicherheit ist eine wichtige Randbedingung.

Eine selbstlernende und vorausschauende Regelung ist für eine effektive Speicherbewirtschaftung unerlässlich. Das Projekt zeigt, wie sich auch in dicht bebauten Arealen ein Maximum an Umweltenergie nutzen und gleichzeitig das Stadtklima positiv beeinflussen lässt. Dank hoher Photovoltaikbelegung und optimiertem Wärmemanagement, wird ein spezifischer Elektroenergiebezug erwartet, der den Passivhausstandard übertrifft und Erkenntnisse für künftige, weniger komplexe Konzepte liefern kann.

Dokumentation über das Energiekonzept im Dockyard Waterfront Office

www.youtube.com/ watch?v=94KDLsdW7L0

Michael Viernickel

Unternehmensstrategie und Projektkoordination

https://ezeit-analytics.eu/ team/michael-viernickel/

Fabian Eichelbaum Projektleitung, Energiekonzeptentwicklung und

Anlagensimulation

https://ezeit-analytics.eu/ team/fabian-eichelbaum/

Steckbrief	Energiebilanz	
Projektentwicklung: Pecan Development www.dockyard.de Energiekonzept: eZeit Ingenieure	Strom Strombedarf (WP und Pumpen) PVT-Direktstromnutzung: Netzstrombedarf (WP + Pumpen)	305 MWh - 85 MWh 220 MWh
Bautypologie & Größe Einzelstehendes Bürogebäude, Holz- Hybridbauweise mit Recyclingbeton, 7 Geschosse, BGF = ca. 32.300 m ² PV-Technik	Gesamt PV-Ertrag Stromeinspeisung ins Netz/Mieterstrom Jahresbilanz erzeugter Strom vs. Bedarf	271 MWh 186 MWh 271/305 MWh
140 PV-Module Trina Solar, 450Wp 520 PVT-Module Solink, 500Wp	Wärme	
Umweltenergie 87 Bohrpfähle Ø=90 cm, L=14 m (110 kW) 4.000 m² aktivierte Bodenschicht (160 kW) 1.512 m³ Eisspeicher zur saisonalen Speicherung Wärmepumpe:	Wärmebereitstellung (kWh/m2a) JAZ 4,2 Kältebereitstellung (kWh/m²a) (211 MWh aktiv + 230 MWh passiv) Nutzenergie werden mit bilanziell 54 MWh Strombezug generiert (1,7 kWh/m²a)	1001 MWh 440 MWh 1.441 MWh
16 Propan-Luft-Wärmepumpen 504 kW 1 NH ₃ -Wärmepumpe WP1 - 400 kW Heizen aus Geothermie - 364 kW Heizen aus PVT	Fazit Ohne Anrechnung des eingespeisten Stroms bleiben Strombezug	220 MWh = 7 kWh/m²a
 - 297 kW Kühlen in Geothermie 1 NH₃-Wärmepumpe WP2 - 461 kW Heizen aus Eisspeicher 1 NH₃-Wärmepumpe WP2 	Mittlere Stromverbrauch eines Passivhauses	12,8 kWh/m²a
– 260 kW Heizen aus Serverabwärme	Weitere Infos: www.dockyard.de	

Quellen & Infos

www.sfv.de/energiewendeberliner-dockyard

 ${\sf Abb\,01}-{\sf CO}_2$ muss aus der Atmosphäre geholt werden • Foto: Adobestock

CCS vs CDR: Wie wir das CO₂ aus der Atmosphäre holen

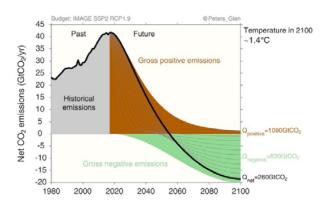
Laut dem Weltklimarat (IPCC) reicht die alleinige Emissionsvermeidung nicht mehr aus, um die Erderwärmung auf maximal 2 °C zu begrenzen. Um Klimaneutralität zu erreichen, sind daher neben 100 % Erneuerbaren Energien für Strom, Wärme und Verkehr auch gezielte Emissionsminderungen durch Energieeinsparung sowie eine Abscheidung und Speicherung von CO_2 aus der Atmosphäre erforderlich. Die Rückholung und Speicherung von CO_2 ist somit ein wichtiger Baustein im Klimaschutz, jedoch mit einer entscheidenden Voraussetzung: Sie darf nicht als Vorwand dienen, um an fossilen Strukturen festzuhalten. Ein genauer Blick auf die verschiedenen Verfahren zeigt: Nicht jede Technologie dient dem Klimaschutz im gleichen Maße.

Text — Caroline Kray

CCS: Lösung oder Alibi?

CCS (Carbon Capture and Storage) ist ein Sammelbegriff für Technologien, mit denen Kohlenstoff "eingefangen" und gespeichert wird. Für die Bewertung dieser einzelnen Methoden ist entscheidend: Wie wird der Kohlenstoff gespeichert? Gasförmig oder in fester Form? Und woher kommt er? Aus vermeidbaren oder unvermeidbaren Emissionen?

Gasförmig oder fest: Zur Speicherung von hochkonzentriertem, gasförmigen CO₂ werden erschöpfte Gaslagerstätten, saline Aquifere oder der Meeresuntergrund diskutiert. Hier soll das CO₂ in tiefliegende Gesteinsschichten verpresst werden. Um Leckagen zu verhindern, braucht es eine zuverlässige Überwachung mit geeigneten Monitoring-Technologien. Diese Systeme sind derzeit nur sehr unzureichend entwickelt. Eine verlässliche Überwachung sollte jedoch zwingende Voraussetzung für diese Speicherform sein. Feste Speicherformen dagegen gelten als dauerhafter und sicherer, da dieser Kohlenstoff nicht flüchtig ist.


Vermeidbar oder unvermeidbar: Wird die Abscheidung und Speicherung von CO₂ direkt an Industrieanlagen umgesetzt, wird meist pauschal von CCS gesprochen. So auch im Koalitionsvertrag von Union und SPD¹. Gemeint ist dabei das Einfangen des CO₂ am Schornstein, noch bevor es in die Atmosphäre gelangt. Zwar lassen sich so neue Emissionen verhindern, doch wird dadurch keine aktive CO₂-Rückholung betrieben.

Dieser Ansatz greift somit zu kurz, ist aber bei unvermeidlichen Emissionen (z. B. in der Zementindustrie) sinnvoll. Bei vermeidbaren Emissionen hingegen wird CCS oft als Feigenblatt verwendet, um echte Dekarbonisierung zu verzögern. Schwer wiegt zudem die bereits erwähnte Frage: Wohin mit dem hochkonzentrierten CO₂?

Daneben steht der Ansatz, der unter dem Begriff *CDR (Carbon Dioxide Removal)* oder auch *NET (Negative Emissions Technologies)* zusammengefasst wird. Auch hier wird CO₂ abgeschieden und gespeichert. Dort geht es jedoch um den aktiven Entzug des Kohlenstoffs, der sich in den vergangenen Jahren in der Atmosphäre angesammelt hat. Der Einsatz dieser CDR-Technologien ist laut Weltklimarat (IPCC) unverzichtbar, um die Erderwärmung auf maximal 2 °C zu begrenzen. Welche CDR-Methoden diskutiert werden und welches Potenzial sie haben, schauen wir uns im nächsten Abschnitt genauer an.

CDR: Potenziale, Herausforderungen und Technologien

Wie viel CO₂ können wir wie schnell aus der Atmosphäre entnehmen? Was wird es kosten? Wie viel Energie muss dafür eingesetzt werden? Welche Umweltauswirkungen sind zu erwarten? Diese zentralen Fragen sind bislang nur unzureichend geklärt. Die Wissenschaft gibt derzeit grobe Einschätzungen ab, doch bleiben viele Unsicherheiten offen und es besteht ein erheblicher Forschungsbedarf². Heute schon absehbar ist jedoch, dass keine einzelne Technologie die global erforderliche CO₂-Menge in Höhe von 800 Milliarden Tonnen bis 21003 allein bewältigen kann – bedingt durch Limitierungen in der Flächenverfügbarkeit und bei geologischen Speichern⁴. Daher braucht es ein Portfolio aus verschiedenen Technologien. Ebenfalls klar ist, dass die CO2-Rückholung mit erheblichen Kosten, einem nennenswerten Energiebedarf und dem Aufbau einer geeigneten Infrastruktur verbunden ist. Die Marktreife von Rückholungs-Technologien variiert erheblich: Während einige, wie die Herstellung von Pflanzenkohle (Reifegrad TRL8+)5, bereits in der Massenproduktion sind, befinden sich andere, etwa die direkte CO2-Abscheidung aus der Luft (Direct Air Capture), noch in der Entwicklungs- oder Pilotphase (Reifegrad TRL7)6 - sind also noch Zukunftsmusik. Folgende Methoden werden primär diskutiert:

Abb 1 — Für ein 1,5°C-kompatibles Szenario braucht es sowohl eine drastische Emissionsreduktion als auch den aktiven Entzug von CO₂ aus der Atmosphäre • © Glen Peters

Natürliche Kohlenstoffsenken

Wälder, Ozeane, Moore und Böden können große Mengen CO₂ binden. Aufforstung und nachhaltige Forstwirtschaft tragen ebenfalls zur Kohlenstoffspeicherung bei. Wiedervernässte Moore bieten ein hohes Rückhaltungspotenzial, indem sie CO₂-Emissionen aus entwässerten Torfböden verhindern. Humusaufbau durch regenerative Landwirtschaft kann Kohlenstoff langfristig im Boden speichern und gleichzeitig die Bodenqualität verbessern. Allerdings reichen natürliche Senken allein nicht aus, um den notwendigen CO₂-Entzug zu gewährleisten. Ihre Kapazität ist durch die Flächenverfügbarkeit begrenzt. Durch Waldbrände und Trockenheit kann der in Senken gespeicherte Kohlenstoff als CO₂ wieder in die Atmosphäre gelangen.

Technische Verfahren

Pflanzenkohle oder auch Biochar Carbon Removal

Bei diesem Verfahren wird organisches Material unter Sauerstoffausschluss zu u.a. Pflanzenkohle (eng. Biochar) zersetzt – eine feste Form von Kohlenstoff, die CO_2 über Jahrhunderte stabil bindet. Die Methode ist bereits gut im Hunderttausend-Tonnen-Maßstab etabliert^8 und im Vergleich zu anderen CDR-Methoden kosteneffizient. Die Produktionsanlagen können zudem erneuerbare Wärme und Strom bereitstellen. Die Pflanzenkohle hat Zusatznutzen bei landwirtschaftlicher Anwendung. Ihr Potenzial liegt im Milliarden-Tonnen-Bereich und ist von der Verfügbarkeit nachhaltiger Biomasse abhängig.

2 Direkte CO₂-Abscheidung aus der Luft (DACCS)

Mit chemischen Verfahren wird CO_2 direkt aus der Umgebungsluft gefiltert und unterirdisch gespeichert. Dazu wird das komprimierte CO_2 in Gesteinsschichten gepresst. Die Technologie gilt als vielversprechend, ist jedoch teuer und energieintensiv. Um DACCS CO_2 -neutral zu betreiben, würden große Mengen erneuerbaren Stroms benötigt.

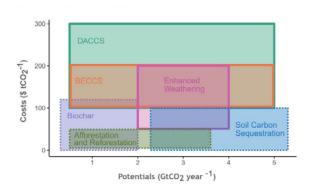


Abb 2 — Der IPCC schätzt Kosten & Potenziale verschiedener CO₂- Entnahmeverfahren bis 2050 auf Basis einer systematischen Studienauswertung. Pflanzenkohle und Aufforstung sind bereits bereit für eine Skalierung. • © IPCC [7]

Abb 3 — Wälder können CO_2 rückholen, doch ihr Kohlenstoffspeicher ist anfällig für Feuer, Dürren und Schädlinge \bullet © Susanne Jung

Abb 4 — In einer Hand voll Pflanzenkohle sind ungefähr 300 g Kohlenstoff dauerhaft aus der Atmosphäre entzogen und gespeichert. • © German Biochar e. V.

 $\label{eq:Abb5} \textbf{-} \textbf{Moore}, \text{die wasserges\"{a}ttigt} \text{sind}, \text{speichern} \\ \textbf{Kohlenstoff} \text{ dauerhaft ein. Trockengelegte Moore} \\ \text{werden zu erheblichen CO}_2\text{-} \text{ und Lachgas-Quellen} \bullet \\ \textcircled{\tiny Maksim Shutov} | \textbf{Unsplash} \\ \end{matrix}$

Zudem entstehen Ewigkeitskosten durch die Überwachung der Speicherorte im Hinblick auf Leckagen. Die Technologie befindet sich im Anfangsstadium und es besteht erheblicher Forschungsbedarf. Bis zur Marktreife ist mit einigen Jahrzehnten zu rechnen, auch um Risiken für Gesundheit und Umwelt (z. B. lokale Erdbeben, Verunreinigung des Grundwassers, Austreten von CO₂) auszuschließen.

Bioenergie mit CO₂-Abscheidung & Speicherung (BECCS)

Biomasse wird zur Energiegewinnung verbrannt, wobei das entstehende CO₂ abgeschieden und dauerhaft gespeichert wird. Diese Technik kann negative Emissionen erzeugen, benötigt aber große Anbauflächen. Somit ist das Rückhol-Potenzial durch die Verfügbarkeit nachhaltiger Biomasse limitiert. In Bezug auf die geologische Speicherung gelten die gleichen Aspekte wie bei DACCS.

4 Beschleunigte Gesteinsverwitterung

Mineralien werden zu einem feinen Gesteinsmehl zermahlen, das auf Böden und in Ozeane ausgebracht wird. Dort reagiert es mit atmosphärischem CO₂, das im Regenwasser gelöst ist und bindet den Kohlenstoff in stabilen Mineralverbindungen. Dieses Verfahren hat großes Potenzial, erfordert jedoch hohe Energiemengen für Abbau, Transport und Verarbeitung der Gesteine.

Fazit

Die Rückholung und Speicherung von CO₂ ist ein unverzichtbarer Baustein im Klimaschutz. Doch ein genauer Blick auf die zentralen Fragen ist entscheidend: Woher kommt der Kohlenstoff und wie wird er gespeichert?

CCS (von Emissionen aus der Verbrennung von fossilen Energieträgern) als Strategie zur Emissionsvermeidung greift zu kurz, da es lediglich die zusätzlichen Emissionen reduziert, ohne die bestehenden fossilen Strukturen in Frage zu stellen.

Hinzu kommt die bislang unzureichend geklärte Frage, wo und wie das eingefangene gasförmige CO2 dauerhaft und sicher gespeichert werden kann und wer die zugehörigen Ewigkeitskosten tragen wird. Die Entwicklung von CDR-Technologien zum direkten Entzug von atmosphärischem CO2 bietet jedoch langfristig eine große Chance zur Stabilisierung des Klimas. CDR wird Emissionsminderungen jedoch nicht ersetzen, sondern ist eine notwendige Ergänzung. Hinzu kommt, dass der Einsatz von CO₂-Rückholungstechnologien sehr teuer ist und viel Energie benötigt wird. Die natürlichen Senken sowie die bereits erprobten Methoden wie Aufforstung und Pflanzenkohle sollten sofort ausgebaut werden. Neue Technologien wie DACCS stecken noch in den Kinderschuhen und werden vermutlich Jahrzehnte¹⁰ brauchen, bis sie sich als sicheres Serienprodukt etabliert haben. Hier braucht es intensive Forschung, denn ohne den parallelen Ausbau von einem sinnvollen Mix an CO2-Rückholung rückt die Einhaltung des 2-Grad-Ziels in weite Ferne.

Caroline Kray

Diplom Betriebswirtin (BA). Seit 2018 unterstützt sie den SFV u. a. in der Öffentlichkeitsarbeit. Zuvor arbeitete sie für den German Biochar e. V. und engagierte sich beim Forschungsprojekt "FYI: Landwirtschaft 5.0", bei dem die CO₂-Rückholung eine zentrale Rolle spielt.

Quellen & Infos www.sfv.de/ccs-vs-cdr

bberatung

Übersicht: Das SFV-Beratungsangebot

Alle Infos — www.sfv.de/solarberatung/efh www.sfv.de/solarberatung/mfh

Gruppen-Beratung

Sie planen eine Solaranlage auf einem Einfamilienhaus oder einem Mehrfamilienhaus? In regelmäßigen Abständen geben wir kurze Info-Vorträge über die wichtigsten Themen. Im Anschluss können wir Ihre Fragen besprechen. Für alle Teilnehmenden kostenfrei. Infos und Termine:

www.sfv.de/aktuelles/termine

Kurz-Beratung

Wir helfen fachkundig und herstellerunabhängig durch den Dschungel der komplexen Solar-Rahmenbedingungen. Wir beraten Mitglieder und Nichtmitglieder kostenfrei. Für Mitglieder können wir uns mehr Zeit nehmen. Von Mo. bis Fr. von 9 bis 13 Uhr können Sie einfach anrufen. Oder Sie schreiben uns per Mail.

Angebots-Prüfung

Wir prüfen Ihre PV-Angebote für Einfamilienhäuser auf technische und wirtschaftliche Plausibilität - unabhängig, verständlich und zum Pauschalpreis. Mitglieder können ihren Mitgliedsbeitrag einmal pro Jahr als Bonus anrechnen lassen. Alle weiteren Infos und Konditionen finden Sie unter:

www.sfv.de/solarberatung/efh/angebots-check

MFH-Projektberatung

In unserer kostenpflichtigen 90-minütigen Projektberatung gehen wir individuell auf Ihr Projekt ein und klären Ihre Fragen, z.B. zu Technik, Betriebsmodellen und WEG-Abstimmung. Sie dient als Vorbereitung für Solarinvestitionen auf dem MFH. Mitglieder können ihren Mitgliedsbeitrag einmal pro Jahr anrechnen lassen.

www.sfv.de/solarberatung/mfh/ projektberatung-mehrfamilienhaus

Beratung Kommunen

Auch für Kommunen, Landkreise und andere Organisationen bieten wir Fachvorträge und Beratungen (EFH/MFH). Auch bilden wir ehrenamtliche Solar-Botschafter:innen in Ihrer Stadt aus. Alle Angenote gibt es sowohl einzeln als auch im Paket. Kontaktieren Sie uns gerne.

Online-Vorträge

Viele verschiedene Vortragsthemen haben wir aufgezeichnet und können kostenfrei nachträglich angeschaut werden. Zum Beispiel zu PV und Denkmalschutz, Steckersolar, Ü20-Anlagen, Betriebskonzepte für Mehrfamilienhäuser oder zum (Klima-)Zustand des Planeten. Schauen Sie selbst:

Stromspeicher – Basics und häufig gestellte Fragen zur Anwendung

Ohne Speicher liegt die übliche PV-Eigenverbrauchsquote bei ca. 20 – 40 %. Mit einem Batteriespeicher kann sie deutlich erhöht werden auf ca. 50 – 80 %. Für den Betrieb einer PV-Anlage ist ein Speicher aber nicht zwingend notwendig! In diesem Artikel gehen wir auf die wichtigsten Informationen zu Batteriespeichern ein.

Text — Tobias Otto

Wann ist ein Speicher wirtschaftlich und ökologisch sinnvoll?

Fast alle neuen PV-Anlagen werden heutzutage mit einem Stromspeicher gekoppelt. Aber nicht immer lohnt sich ein Speicher auch finanziell. Durch die zusätzlichen Kosten beeinflusst er die Wirtschaftlichkeit der PV-Anlage. Diese Mehrkosten müssen über die Betriebszeit wieder eingebracht werden. Die geringere Lebensdauer des Speichers von ca. 10 – 15 Jahren muss dabei mitgedacht werden (Zum Vergleich: PV-Module haben eine Lebensdauer von ca. 30 Jahren). Schauen Sie sich eine Wirtschaftlichkeitsberechnung deshalb genau an!

Grundsätzlich ist ein Batteriespeicher im Eigenheim auch nicht sofort ökologisch, denn mehr Grünstrom wird dadurch nicht erzeugt. Bei der Rohstoffgewinnung und Herstellung werden darüber hinaus einige Ressourcen benötigt. Deshalb lautet unsere Devise: Erstmal das Dach mit PV vollmachen! Viele SFV-Mitglieder und PV-Begeisterte belegen sogar ihre Norddächer. Wenn die Batteriespeicher über die "Solarstromoptimierung in

48 Beratung

> den eigenen vier Wänden" hinaus auch Netzdienstleistungen übernehmen oder als Quartierspeicher die Nachbarschaft beliefern, steigt ihr Nutzen für die Energiewende immens. Damit können sie die Stromnetze lokal entlasten, so dass mehr PV-Anlagen angeschlossen werden können. Leider werden heute noch wenige Speicher prognosebasiert oder netzdienlich betrieben, wie eine Untersuchung von Herr Dr. Weniger und der HTW Berlin zeigt - worauf er in einem Artikel auf Seite 22 genauer eingeht.

Tipp: Dimension

Die Forschungsgruppe Solarspeichersysteme der Hochschule für Technik und Wirtschaft Berlin bietet auf ihrer Webseite weitere Infos und Tools zur sinnvollen Speicherdimensionierung:

https://solar.htw-berlin.de/themen/ solarstromspeicher/

[...] mehr Info

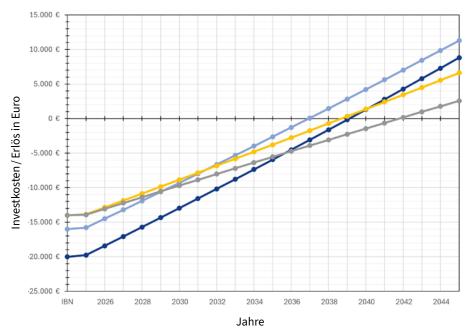
Orientierungswerte zur Speicherdimensionierung:

- 1 kWh Speicherkapazität pro 1000 kWh .lahresstromverbrauch.
- 1 kWh Kapazität pro 1 kWp PV-Leistung.

Zwischen diesen beiden Werten ist ein Speicher sinnvoll dimensioniert. Ein noch größerer Batteriespeicher ist wirtschaftlich selten sinnvoll.

Wie ist ein Speicher optimal dimensioniert?

In unserer PV-Beratung fällt auf, dass oft etwas zu groß dimensionierte Speicher angeboten werden - größer als technisch notwendig und wirtschaftlich sinnvoll. Das sind unnötige Kosten und es verbraucht Rohstoffe, die an anderer Stelle besser zum Einsatz kommen können.


Ein Beispiel: 3000 kWh Jahresverbrauch und 8 kWp Leistung der PV Anlage ergeben gemäß der Orientierungswerte in der blauen Infobox (rechts) eine empfohlene Speicherkapazität zwischen 3 und maximal 8 kWh. In dieser Spanne ist der Speicher sinnvoll dimensioniert. In Standardhaushalten mit 3-4 Personen und einem durchschnittlichen Stromverbrauch von 3500 kWh ist eine Dimensionierung am unteren Ende der Spanne ausreichend. Werden eine Wärmepumpe oder weitere größere Verbraucher eingesetzt, oder wird eine Not- oder Ersatzstromversorgung gewünscht, kann die Kapazität am oberen Ende der Spanne angesiedelt werden. Einige Hersteller ermöglichen auch eine spätere modulare Aufrüstung der Speicherkapazität innerhalb bestimmter Zeiträume.

Amortisationszeit: Kosten-Nutzen Vergleich

Wir haben eine Beispielrechnung durchgeführt, die verdeutlicht, wie sich verschiedene Anlagenszenarien auf die Wirtschaftlichkeit und Amortisationszeit auswirken (Abb. 1). Die Berechnungsgrundlage ist eine 10-kWp-Anlage mit einer spezifischen Stromerzeugung von 998 kWh/kWp und Inbetriebnahme im Oktober 2025. Der angenommene Haushaltsstrombedarf liegt bei 3.500 kWh/Jahr. Der Netzstrompreis beträgt 35 ct/kWh mit einer jährlichen Strompreissteigerung von 1 % sowie Messkosten in Höhe von 50 €/Jahr. Es wurden vier Szenarien verglichen: ein gut dimensionierter Speicher (5 kWh), ein überdimensionierter Speicher (15 kWh), eine Anlage ohne Speicher (Eigenverbrauch) und eine Anlage mit Volleinspeisung.

Die Einspeisevergütung beträgt 7,86 ct/kWh. Im Szenario der Volleinspeisung wird zusätzlich ein Bonus von 4,61 ct/kWh berücksichtigt. Ebenso fließen die Einbußen bei negativen Strompreisen gemäß der Regelung des "Solarpaket 1" in die Kalkulation ein, was den theoretischen Vergütungszeitraum bei Volleinspeisung verlängert. Es wurden spezifische PV-Investitionskosten von 1.400 €/kWp (insgesamt 14.000 €) und spezifische Speicherkosten von 400 €/kWh angesetzt. Dies führt zu Speicherkosten von $2.000 \in (5 \text{ kWh}) \text{ bzw. } 6.000 \in (15 \text{ kWh}).$

Der Betrachtungszeitraum erstreckt sich über 20 Jahre von 2025 bis 2045. Die vertikale Achse zeigt die anfänglichen Investitionskosten und die über die Jahre aufsummierten Einsparungen. Die horizontale Achse stellt die Zeit in Jahren dar. Für die Beurteilung der Wirtschaftlichkeit ist der Schnittpunkt der Kurven mit der O-€-Linie (horizontale Achse) entscheidend. Dieser markiert den Zeitpunkt, an dem sich die Investition amortisiert hat. Die Simulation zeigt, dass die Variante mit dem 5-kWh-Speicher (hellblau) mit 14 Jahren die kürzeste Amortisationszeit aufweist und nach 20 Jahren Betrieb auch die höchsten Gesamteinsparungen erzielt. Interessant ist zudem die fast zeitgleiche Amortisation des 15-kWh-Speichers (dunkelblau) und der Variante ohne Speicher (gelb) nach rund 16 Jahren. Ein überdimensionierter Speicher verbessert also nicht zwingend die Wirtschaftlichkeit und sollte zur Reduzierung der Investitionskosten und der Schonung von Ressourcen vermieden werden. Zu bedenken ist auch die begrenzte Lebensdauer von

 ${\bf Abb\,1} - {\bf Investkosten} \ {\bf und Erlöse} \ \ddot{\bf uber} \ eine \ {\bf Betriebszeit} \ von \ 20 \ {\bf Jahren} \ bei \ verschieden en \ {\bf Anlagenkonfigurationen \bullet Ermittelt} \ \dot{\bf in PV@Now Manager}$

Batteriespeichern und ihre abnehmende Kapazität durch Alterung, die in der Berechnung nicht berücksichtigt wurde. In Fachkreisen wird von einer Lebensdauer von ca. 15 Jahren ausgegangen. Es ist daher möglich, dass die Speicherkapazität des Speichers nach 15 Jahren Nutzungsdauer soweit reduziert ist, dass ein Austausch sinnvoll sein könnte. Die angenommenen Investitionskosten beeinflussen das Ergebnis maßgeblich. Bei günstigeren Speicher- oder PV-Preisen würden sich die Schnittpunkte auf der Zeitachse nach vorne verschieben und die Anlage würde sich entsprechend schneller amortisieren. Für die richtige Dimensionierung des Speichers ist es deshalb wichtig, Stromverbrauch, Stromkosten, Vergütung und Investitionskosten sowie zukünftige Veränderungen zu berücksichtigen.

Gut dimensionierter Speicher 5kWh

(Eigenverbrauch):

14 Jahre Amortisationszeit

5,82% Rendite

11.294 Euro Erlös

Überdimensionierter Speicher 15kWh

(Eigenverbrauch):

16 Jahre Amortisationszeit

3,80 % Rendite

8,809 Euro Erlös

Kein Speicher (Eigenverbrauch):

16 Jahre Amortisationszeit

4,09% Rendite

6.601 Euro Erlös

Kein Speicher (Volleinspeisung):

19 Jahre Amortisationszeit

1,94% Rendite

2.574 Euro Erlös

Wieviel kostet ein Batteriespeicher in der Anschaffung?

Die Marktpreise für Batteriesysteme liegen abhängig von Technologie, Herkunft und Größe (Skaleneffekte) zwischen 160 und 700 Euro/ kWh (ohne Wechselrichter und Installation; Stand: September 2025). In unserer Beratungsarbeit fällt öfters auf, dass die Marktpreise nicht immer von den Installateuren oder deren Großlieferanten an die Endkund*innen weitergegeben werden. Langfristig gehen wir von sinkenden Preisen aus, aber durch Inflation oder andere Faktoren können die Preise kurzfristig auch steigen – der Angriffskrieg auf die Ukraine und der daraus folgende Gasmangel hat zum Beispiel 2022 zu einer großen Nachfrage und steigenden Preisen geführt. Betrachten Sie die Speicherkosten in einer Wirtschaftlichkeitsberechnung genau und wägen Sie ab, ob sich das Investment aktuell lohnt oder nicht. Sie können den Speicher auch später zur PV nachrüsten.

Wie sieht es mit Lebensdauer, Ladezyklen & Garantie aus?

Batteriezellen altern. Mit zunehmender Anzahl an Ladezyklen und Betriebsstunden verlieren sie ihre Kapazität. Viele Hersteller geben Leistungsgarantien, z. B. 80 % der Kapazität nach 5000 Vollladezyklen oder 10 Jahren. In der Branche geht man bei Batterien von

50 Beratung

einer Lebensdauer von etwa 15 Jahren aus. Die Zellen sind dann weiterhin nutzbar, jedoch sinkt ihre Kapazität mit jedem Betriebsjahr weiter. Auch der Batteriewechselrichter hat eine begrenzte Lebensdauer. Hersteller bieten oftmals eine Garantie von z.B. 8-12 Jahren, die ggf. auch gegen Aufpreis verlängert werden kann. Es kann also sein, dass Sie während der Betriebszeit Ihrer PV-Anlage einige Komponenten erneuern oder reparieren müssen.

Was ist ein Lade- oder Energiemanagement?

Der Batteriespeicher besitzt ein Lademanagement, das dafür sorgt, dass schädliche Tiefent-ladungen vermieden werden. In Kombination mit einem *Energiemanagementsystem* (EMS: ein separates Gerät, das Stromverbraucher im Haus erfassen und ggf. steuern kann) ist es auch möglich, die Reihenfolge der Belieferung zu regeln: Erst der Haushalt, dann die Wärmepumpe, das E-Auto oder andere Geräte. Auch der Batterie-Ladezustand, die PV-Erzeugung und das Wetter können berücksichtigt werden. Die Energiemanagement-Geräte verschiedener Hersteller haben unterschiedliche Bezeichnungen, z. B. "Sunny Home Manager", "Smart Power Sensor" oder "Wattpilot". Weitere Infos zum EMS gibt es auf Seite 56 im Heft.

Welche Zelltechnologien gibt es für Batterien?

Es gibt verschiedene Zelltechnologien am Markt. Am weitesten verbreitet sind heute Lithium-Ionen-Speicher. Aufgrund ihrer hohen Energiedichte und der hohen Lade- und Entladeleistung werden sie für die meisten Anwendungen eingesetzt. Lithium-Batterien lassen sich weiter unterteilen in:

NMC (Li-Nickel-Mangan-Kobalt) NCA (Li-Nickel-Kobalt-Alu-Oxid) und LFP-Zellen (Lithium-Eisenphosphat, auch LiFePO4)

NMC und NCA wurden vor allem in mobilen Anwendungen eingesetzt. Mittlerweile setzen sich bei E-Autos und Hausspeichern aufgrund der Temperaturstabilität und geringerem Bedarf an seltenen Erden (z. B. Kobalt) immer mehr LFP-Speicher durch. Studien zeigen, dass LFP-Zellen eine höhere Zyklenfestigkeit und Entladetiefe aufweisen als NMC- und NCA-Zellen.

Eine weitere interessante Zelltechnologie sind Natrium-Ionen-Speicher (Na-Zellen, umgangssprachlich auch "Salzbatterie"). Ihr großer Vorteil: Natrium muss nicht in aufwendigen und teilweise umweltschädlichen Verfahren abgebaut werden (wie Lithium). Aktuell am Markt verfügbare Na-Zellen haben eine geringere Energiedichte und geringere Leistungsdaten, wie auch die Speicher-Inspektion 2023 der HTW-Berlin feststellte. Durch Forschung und sinkende Kosten werden sie jedoch zu einer Alternative, wie z. B. aktuelle Entwicklungen des Herstellers CATL zeigen.

Tipp: Inspektion

Stromspeicher-Inspektion der HTW

Die Effizienz von Batteriespeichersystemen ist neben dem Preis ein entscheidender Faktor für die Wirtschaftlichkeit von PV-Anlagen. Je effizienter ein System, desto mehr Strom kann genutzt werden. Die Forschungsgruppe Solarspeichersysteme der HTW Berlin testet und vergleicht regelmäßig DC- und AC-geführte PV-Batteriesysteme. Ein Blick lohnt sich:

AC 4 DC

Was ist ein AC- oder DCgeführtes System?

PV-Module und Batteriezellen arbeiten mit Gleichstrom ("Direct current"/DC). Ein Wechselrichter muss den Strom umwandeln, damit er in Form von Wechselstrom ("Alternating current"/AC) im Hausnetz nutzbar ist.

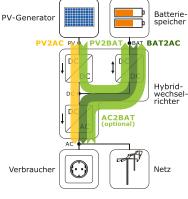
Beratung • 51

Wenn der Batteriespeicher und die PV-Anlage gleichzeitig installiert werden, wird meist ein Hybridwechselrichter eingesetzt, der beide Komponenten steuern kann. Man spricht dann von einem DC-geführten System, da PV-Module und Batterie gleichstromseitig an den Hybridwechselrichter angeschlossen werden (siehe Abb. 2). Der Strom wird auf dem Weg zum Verbraucher nur einmal umgewandelt, deshalb haben sie geringere Umwandlungsverluste und sind damit effizienter bzw. haben einen höheren Wirkungsgrad. Bei Neuanlagen werden meistens DC-geführte Systeme eingesetzt.

Ein AC-geführtes System besteht aus mindestens zwei Wechselrichtern. Einen für die PV-Module und einen für den Batteriespeicher. Der Batteriewechselrichter und die Batterie können in einem Gehäuse geliefert werden, es gibt sie aber auch als separate Komponenten, zum Beispiel zum Aufstellen oder an die Wand montieren. Der PV-Wechselrichter und der Batteriewechselrichter werden wechselstromseitig (AC) miteinander verbunden und daher als AC-gekoppelt bezeichnet. Beim Laden der Batterie wird der Strom systembedingt doppelt umgerichtet (siehe Abb. 2). Deshalb sind die Umwandlungsverluste höher und damit der Wirkungsgrad etwas niedriger als bei DC-geführten Systemen. Der Vorteil ist jedoch die einfache Nachrüstung und Aufrüstung, z. B. für ältere PV-Anlagen, die noch keinen Batteriespeicher besitzen.

Die Effizienz von Batteriespeichersystemen ist neben dem Preis ein entscheidender Faktor für die Wirtschaftlichkeit von PV-Anlagen. Je effizienter ein System, desto mehr Strom kann gespeichert und genutzt werden. Über die Lebensdauer einer Anlage können sich wenige Prozentpunkte aufsummieren.

Notstrom, Ersatzstrom & Inselnetz -Was ist der Unterschied?


Nicht jede PV-Anlage ist automatisch in der Lage, bei Netzausfall weiter das Haus zu versorgen. Wenn ein solches System gewünscht ist, sollte dies bei der Planung mitbedacht werden. Der nachträgliche Einbau einer Batterie führt zu höheren Kosten, z.B. wenn der Wechselrichter der PV-Anlage getauscht werden muss. Der Wechselrichter muss eine eigene Netzspannung aufbauen und bei Überschuss die PV-Leistung abregeln können. Mit einem Batteriespeicher kann der Strom auch zwischengespeichert werden. In diesem Zusammenhang sind die Begriffe Notstrom, Ersatzstrom und Inselsystem üblich: Ein notstromfähiger Wechselrichter kann bei Netzausfall entweder eine separate Steckdose mit Strom versorgen (die häufig direkt am Hybridwechselrichter ist), oder es wird nur ein bestimmter Stromkreis (z. B. Kühlschrank oder andere wichtige Verbraucher) versorgt. Diese Lösung ist mit verhältnismäßig wenig Aufwand und geringen Kosten umsetzbar. Nachteil: Nicht das gesamte Haus wird versorgt, sondern nur ausgewählte Verbraucher, die an die Notstromleitung des Wechselrichters angeschlossen sind.

Eine vollständige Versorgung des Gebäudes über alle 3 Phasen wird Ersatzstromsystem genannt. Es muss zusätzlich eine Umschalteinrichtung installiert werden, die das System bei Ausfall vollständig vom öffentlichen Netz trennt. Anschließend startet der Wechselrichter neu und versorgt das Gebäude mit Strom - allerdings nur so lange, wie die Solaranlage genug Strom liefert oder der Speicher gefüllt ist. Sobald das Netz wieder verfügbar ist, wird wieder umgeschaltet. Der größere Installationsaufwand und die zusätzliche Technik (Netztrennschalter) belaufen sich auf ca. 1000 bis 3000 €.

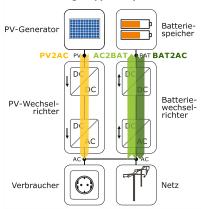

Inselsysteme werden eingesetzt, wenn kein öffentlicher Netzanschluss vorhanden ist (z. B. Gebirgshütten etc.). Ein Parallelbetrieb zum öffentlichen Stromnetz ist nicht vorgesehen und die Technik wird auch nicht dafür ausgelegt. Die PV-Anlage, Wechselrichter und Batterien müssen so dimensioniert werden, dass die Stromversorgung bedarfsgerecht sichergestellt werden kann. Auch im Campingbereich oder mit tragbaren Batterien kann ein Inselsystem aufgebaut werden. Für Gebäude mit Netzanschluss ist dieses System wenig sinnvoll.

Abb 2 — Umwandlungspfade von AC-gekoppelten und DC-gekoppelten Systemen. Die Bezeichnungen (PV2AC, AC2BAT, BAT2AC, PV2BAT) ergeben sich aus der jeweiligen Energieflussrichtung. • © HTW Berlin

DC-gekoppelte Systeme

AC-gekoppelte Systeme

Leseempfehlung

Notstrom, Ersatzstrom & Inselnetz Das Photovoltaikforum hat einen Artikel verfasst, der die Themen noch etwas genauer beleuchten:

www.photovoltaikforum.com/core/ article/35-notstrom-ersatzstromoder-inselbetrieb-wo-liegen-dieunterschiede/

Sparen mit dynamischen Stromtarifen: Ein Erfahrungsbericht aus 2024

Dynamische Stromtarife orientieren sich am Börsenpreis und ändern sich regelmäßig. Sie gelten als wichtiger Baustein der Energiewende und sollen Anreize schaffen, sogenannte "steuerbare Verbrauchseinrichtungen" wie Elektroauto, Wärmepupmpe oder auch die Waschmaschine vorrangig dann zu nutzen, wenn die Erneuerbaren auf Hochtouren laufen. Seit 1. Januar 2025 ist jeder Stromanbieter verpflichtet einen solchen Tarif anzubieten. Eine gute Sache also. Oder gibt es doch Situationen, in denen sich die oft versprochenen "hohen Einsparungen" gar nicht so einfach realisieren lassen?

Text — Andreas Ampferl

Strommarkt im Wandel

Im Gegensatz zu Ländern wie z. B. den USA sind wir es in Deutschland im Großen und Ganzen gewohnt, dass wir einmal im Jahr erfahren, was uns der Bezug von Strom (also der Strompreis pro kWh, auch Arbeitspreis genannt, und der Grundpreis pro Monat) die nächsten 12 Monate kosten wird. In einem Stromsystem, bei dem zentralisierte Kraftwerksparks den Bedarf im Stromnetz nachfuhren mag das noch einigermaßen sinnvoll gewesen sein, aber unser Stromnetz hat sich mittlerweile grundlegend verändert.

Während für den Betrieb fossiler Kraftwerke immer Brennstoffkosten anfallen, gibt es diese bei Sonne und Wind schlicht nicht. Wenn man also erst einmal das Geld für zusätzliche Erzeugungskapazitäten durch Sonne und Wind investiert hat, die man aufgrund der Volatilität benötigt, entstehen plötzlich Stromüberschüsse. Diese kann man entweder wegdrosseln oder aber

möglichst sinnvoll nutzen. Es gibt Verbraucher, deren Bedarf sich verschieben lässt und die dann betrieben werden können, wenn erneuerbare Überschüsse vorhanden sind. Bestenfalls lässt sich so vermeiden, dass zu einem anderen Zeitpunkt mehr fossile Kraftwerke laufen müssen. Je höher der Anteil von PV und Wind in unserem Stromnetz, desto mehr bewegen wir uns von einer bedarfsgeführten Stromerzeugung hin zum erzeugungsgeführten Verbrauch. Nur kann man mit einem fixen Preis, der für das ganze Jahr gilt, von dieser Errungenschaft der Energiewende nicht profitieren.

Wie entsteht unser Strompreis?

Der Strompreis für den typischen Stromkunden setzt sich aus den verschiedensten Komponenten zusammen. Hier mal ein Bespiel: In der gezeigten Zusammensetzung des Endkunden-Strompreises (Abb. 01) betragen die Strombeschaffungskosten, welche bei

- * Netzentgeltentlastung d. stromintensiven Industrie
- ** Entschädigung Offshore-Windparks für verspäteten oder unterbrochenen Netz-Anschluss sowie Errichtung und Betrieb der Anbindungsleitung

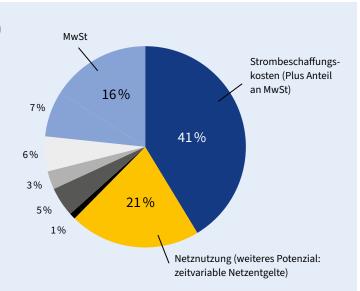
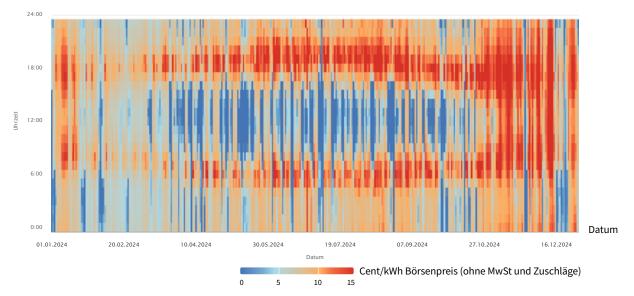


Abb 01 — Zusammensetzung Strompreis für eine bayrische Gemeinde <25000 Einwohner lt. Stromabrechnung, Stand: Januar 2025 • Grafik: Andreas Ampferl

 ${\bf Abb~02} - {\bf Das~Eigenheim~als~Testobjekt~f\"ur~dynamische~Strompreise~mit~Standort~in~Bayern~} \bullet {\bf Foto:~Andreas~Ampferl}$


dynamischen Stromtarifen flexibel sind nur 41%. Darin sind sowohl die Erzeugungskosten als auch die vom Stromanbieter auf den Arbeitspreis umgelegten Margen enthalten. Leicht vereinfacht kann man sich die Entstehung der Strombeschaffungskosten wie folgt vorstellen:

Hat man einen Fixpreis-Tarif wird der Stromanbieter für das Folgejahr die Strommenge des letzten Jahres über langfristige Verträge bei den Stromerzeugern einkaufen. Bei einem dynamischen Strompreis funktioniert das anders. Hier wird der Strom nicht ein Jahr im Voraus, sondern einen Tag im Voraus im Rahmen einer sogenannten Day-Ahead-Auktion vom Stromanbieter für den Endkunden eingekauft. Dadurch erhält man als Kunde eines dynamischen Stromtarifs einmal täglich einen eigenen Strompreis für jede Stunde des kommenden Tages. Auf Basis dieser Informationen kann ein Energiemanagement-System dann die flexiblen Lasten über den Tag einplanen.

Die Auktion ist möglich, weil bereits einen Tag im Voraus gute Schätzungen vorliegen, wie viel Wind und Sonne (und natürlich auch die anderen Erzeugungsformen) über den kommenden Tag erzeugt werden. Damit der Stromanbieter sich mit dem benötigten Strom eindecken kann, ist er auf eine möglichst genaue Prognose des Verbrauchs angewiesen. Hier kommt das so oft erwähnte Smart Meter ins Spiel. Das Smart Meter liest den Zählerstand automatisch aus und schickt diesen alle 15 Minuten an den Stromanbieter. Die mehrmals tägliche Übermittlung des Zählerstands ist nicht nur für die exakte Abrechnung des Verbrauchs notwendig, sondern hilft auch dem Stromanbieter bei der Prognose des künftigen Bedarfs. Dieser hat ein großes Interesse an einer möglichst genauen Prognose, da er bei Abweichungen innerhalb des 15 Minuten-Intervalls zusätzlich Strom im Intra-Day-Handel kaufen oder verkaufen muss. Für den Verbraucher bleibt es jedoch bei den Preisen aus der Day-Ahead-Aktion des Vortags. Abweichungen innerhalb der 15 Minuten-Intervalle gleichen übrigens die Netzbetreiber aus und rechnen dies separat über die Netzentgelte ab.

Welche technischen Voraussetzungen gibt es für die Nutzung von dynamischen Stromtarifen?

Grundvoraussetzung für dynamische Stromtarife ist die automatisierte Übermittlung des Zählerstands. Hat man ein Smart Meter vom Messstellenbetreiber, ist dies gegeben. Wenn nicht, stellt sich hier bereits die erste Herausforderung. Laut einem Bericht der Tagesschau vom 05. Juli 2025 waren Anfang 2025 zwar 14 % der Haushalte verpflichtet ein Smart Meter zu haben, jedoch war zu dem Zeitpunkt nur bei 2,2 % dieser Haushalte ein solches verbaut. Aussagen, dass Deutschland bei der Smart Meter Umstellung hinterherhinkt, erscheint anhand solcher Zahlen noch geschmeichelt. Smart Meter sind bei vielen Netzbetreibern Mangelware und man kann schon froh sein, wenn diese mit der Bestückung von Neuanlagen hinterherkommen, bei denen die Flexibilisierung aufgrund §14a EnWG eine Anschlussbedingung sein kann. Die Kosten für das Smart Meter sind ebenfalls deutlich höher als für den bisherigen digitalen oder analogen Zähler. Jedoch sind diese für kleine PV-Erzeuger im §30 Messstellenbetriebsgesetz gedeckelt. Auch wenn im Normalfall der Netzbetreiber auch der Messstellenbetreiber ist, kann man den Messstellenbetreiber ähnlich wie den Grundversorger beim Strombezug als Kunde frei wählen. Dieser kann ggfs. kürzere Lieferzeiten oder im Einzelfall auch den Messstellenbetrieb zu Kosten unterhalb des gedeckelten Betrags anbieten. Eine Auflistung der wettbewerblichen Messstellenbetreiber findet sich (neben einer Aufstellung der Preisobergrenzen) auf der SFV-Homepage. Einzelne Anbieter wie z. B. Tibber können, falls bereits ein digitaler Stromzähler vorhanden ist, die automatisierte Zählerstandsmeldung über einen Magnetlesekopf realisieren, der zu Einmalkosten von etwa 100€ erhältlich ist. Diese Lösung stellt jedoch kein zertifiziertes Smart Meter dar und funktioniert auch nur mit diesem Anbieter. Auch ist davon auszugehen, dass diese Sonderlösung bei einer künftigen Dynamisierung der Netzentgelte außen vor ist.

Abb 03 — Heatmap der Day Ahead Auktion (DE-LU) in Deutschland 2024. Günstigste Beschaffungspreise: Mittags von April – September. • © Fraunhofer ISE / energy-charts.de (letztes Update: 30.07.2025, Datenquelle: ENTSO-E, EPEX SPOT)

Um die dynamischen Stromtarife sinnvoll nutzen zu können, benötigt man weiterhin mindestens ein oder besser mehrere Geräte mit möglichst hohem, zeitlich verschiebbarem Verbrauch. Das Paradebeispiel dafür wäre ein Elektroauto, in Frage kommen aber auch Geräte mit geringerem Verbrauch wie Waschmaschine, Geschirrspühler oder Wäschetrockner. Eine Wärmepumpe mit eigenem Pufferspeicher kann ebenfalls eine gewisse Flexibilität aufweisen. Wenn der Pufferspeicher zur Maximierung der Effizienz jedoch sehr klein ausgeführt ist oder ganz darauf verzichtet wurde, dürfte sich eine Flexibilisierung schwierig gestalten. Daher hängt die Flexibilität der einzelnen Geräte nicht nur von der Ansteuerbarkeit, sondern auch von den Gewohnheiten bzw. Vorlieben der Haushalte ab. Zu guter Letzt wird noch ein Energie-Management-System benötigt, welches es in vielen Ausführungen gibt. Das kann z. B. eine Steuerbox im Keller, ein Softwaremodul im Stromspeicher, eine Smartphone-App oder in manchen Fällen auch ein Mensch mit viel Zeit und Leidenschaft sein.

Was bringt mir der dynamische Strompreis?

Ich habe mittels dynamischer Stromtarife für das Jahr 2024 einen Durchschnittspreis für die bezogene kWh (Arbeitspreis inkl. aller Abgaben) von 27,6 Cent pro kWh erreicht. Dazu wurde das Auto fast immer zum günstigsten Preis geladen und die Wärmepumpe lief vorzugsweise zu den günstigsten Zeiten, während sie für die teuersten Stunden des Tages gesperrt war. Auch wurde das Laden des PV-Heimspeichers aus dem Netz zu günstigen Stunden einige Male zu Versuchszwecken durchgeführt. Das wirtschaftlich darzustellen ist jedoch alles andere als trivial und ohne Steuerung praktisch unmöglich.

Es konnte so eine Einsparung erzielt werden. Aber: Der günstigste Fix-Preis-Tarif eines Vergleichsprotals wäre nur knapp 1 Cent teurer gewesen. Das bedeutet in meinem Fall (ca. 6500 kWh Restbezug bei 19000 kWh Jahresverbrauch) eine Einsparung von 65€

für das ganze Jahr. Dem gegenüber standen jedoch Mehrkosten für das Smart Meter, in meinem Fall 45€ pro Jahr. Der ganze Aufwand also für 20€ Gesamteinsparung. Der Grund dafür lässt sich am einfachsten anhand der sogenannten Price-Heatmap, wie sie auf *energy-charts.de* verfügbar ist erklären (Abb. 03). Hier ist horizontal jeder Tag des Jahres 2024 aufgetragen und vertikal jede Stunde des Tages. Wir haben also hier 365 x 24 Rechtecke, bei denen dunkelblau bedeutet, dass der Beschaffungspreis nahe 0 Cent/kWh war und je roter, desto teurer. Um also Strom mit verschiebbaren Verbräuchen zu günstigen Zeiten nutzen zu können, benötigt man viele Tage die möglichst dunkle blaue Stunden hat.

Komplizierter ist, wie oben bereits angedeutet, hingegen die Nutzung eines Batteriespeichers zum Verschieben weiterer Verbraucher. Da Speichergrößen typischerweise für eine Verschiebung der Stromnutzung um Stunden, nicht um mehrere Tage dimensioniert sind, benötigt man hier einen möglichst großen Preisunterschied (Preis-Spreizung) innerhalb eines Tages (also in der Heatmap den Wechsel von rot zu blau oder umgekehrt). Hierbei ist dann aber zu berücksichtigen, dass Speicherverluste, selbst wenn sie nur bei 10-20% liegen, dennoch zu einem entsprechenden Mehrverbrauch führen. Da dieser Mehrverbrauch zusätzlich ebenfalls mit Netzentgelt und Steuern- und Abgaben belastet ist (von der zusätzlichen Abnutzung der Batterie ganz zu schweigen), wird es hier gerade für Endkunden sehr schwierig, sich einen finanziellen Vorteil zu erarbeiten, und auch die Steuerung dafür ist kompliziert. Man sieht in der Heatmap, dass es von März bis Mitte Oktober recht viele Tage mit hoher Spreizung gab, oft sogar zweimal am Tag. Ideale Bedingungen also für verschobene Verbraucher und sogar die Nutzung der Batterie. Dummerweise ist das genau die Zeit, in der mein Strom vom Dach und nicht aus dem Netz kommt. Im Winter sehen wir dagegen viele "einfarbige" Balken, was ein Zeichen dafür ist, dass die Schwankungen beim Strompreis eher moderat ausfallen.

Beratung • 55

Die Nutzung der privaten Hausbatterie in Verbindung mit dynamischen Stromtarifen ist also in Kombination mit geringem Netzbezug aufgrund PV finanziell nicht besonders interessant. Entweder ist die Spreizung klein oder die Beladung aus eigenem PV-Strom deutlich günstiger. Anders sieht das wiederum bei netzgebundenen Großbatterien aus. Diese können gerade in den Sonnen-Monaten oft zweimal täglich be- und entladen werden. In Kombination mit drastisch gefallenen Batteriepreisen und der aktuell gültigen Befreiung von der Netzanschlussgebühr sicherlich ein Grund, wieso in Deutschland in diesem Zusammenhang auch von einem Batterie-Tsunami gesprochen wird. Je nachdem, wie schnell der Ausbau der Großbatterien voran kommt (die größte Herausforderung dürften hier die Netzanschlüsse sein), wird sich mittelfristig auch eine Glättung der Preisschwankungen einstellen. Und während man in den vergangenen Jahren immer wieder Zeiten mit deutlich negativem Strompreis hatte, so treten diese mittlerweile nur noch sehr selten auf. Grund dafür könnte auch sein, dass im Gegensatz zu Wind und PV-Anlagen nur wenig regulierbaren Atomkraftwerke zu diesen Zeiten nicht mehr zusätzlichen Strom ins Netz drücken. Aber beides ist zugegebenermaßen Spekulation. Es ist aber davon auszugehen, dass Großbatterien mittel- bis langfristig solche Überproduktionen ebenfalls gerne aufnehmen werden. Meiner Ansicht nach wäre aktuell der bestmögliche Anwendungsfall der Betrieb einer Ladesäule ohne oder mit nur sehr kleiner PV-Anlage. Falls Zusatzkosten für den Smart Meter anfallen, muss man mit gespitztem Bleistift rechnen.

Generell könnte man sagen, dass prinzipiell jeder verschobene Verbrauch ein Gewinn für die Energiewende ist. Aber auch hier gibt es eine Einschränkung: Da wir in Deutschland (zusammen mit Luxemburg) nur eine Strompreiszone haben, kann es vorkommen, dass in einer Hellbrise (das Gegenteil der oft genannten Dunkelflaute, also Zeiten mit viel Wind und Sonne) Windstrom aus dem Norden aufgrund von Netzengpässen nicht in den Süden transportiert werden kann. Solche Netzengpässe werden vom dynamischen Strompreis nicht berücksichtigt. In dem Fall würde ein Windrad im Norden gedrosselt und der gedrosselte Strom im Süden mit fossilen Kraftwerken ersetzt (Redispatch). Auch wenn die Aufteilung Deutschlands in mehrere Strompreiszonen hier Abhilfe bringen könnte, so gibt es hier leider politische Widerstände, die aktuell unüberwindbar scheinen. Eine andere mögliche Lösung wären dynamische Netzentgelte, die solche Engpässe berücksichtigen könnten. Die rechtlichen Grundlagen dafür sind geschaffen, die Umsetzung seitens der Netzbetreiber ist leider auch hier in Verzug. Und auch hier ist das Smart Meter wieder Voraussetzung.

Auch eine Verschiebung des Fokus von Sonne hin zu Wind würde das Problem, gerade bei uns im Süden Deutschlands, deutlich abmildern. Die vereinzelten blauen Linien an Weihnachten und auch die Linien nachts in der Woche davor zeigen klar auf, dass es gerade der Wind ist, der auch im Winter für attrative Preise sorgen kann. Eine gute Verteilung der Erzeugung in der Nähe der Verbraucher würde so nicht nur zu mehr Stunden mit günstigem Strom führen, sondern auch, vor allem in Verbindung mit den vielen geplanten Batteriespeichern, den noch benötigten Netzausbau und damit die volkswirtschaftlichen Kosten deutlich reduzieren.

Welche Nachteile können durch dynamische Tarife entstehen?

Oft wird als Vorteil der dynamischen Tarife die bessere Kostenkontrolle genannt. Eine monatliche Abrechnung des tatsächlich angefallenen Bezugs rückt zwar den Verbrauch deutlich besser ins Bewusstsein, jedoch zum Nachteil, dass es, vor allem in Verbindung mit PV und im Gegensatz zur gleichbleibenden Abschlagszahlung im Fix-Tarif, zu massiven Schwankungen beim Rechnungsbetrag kommt. Während es dann in sonnigen Monaten oft kaum mehr als die Grundgebühr ist, können einzelne Monate schon mal ein Viertel der Jahressumme ausmachen.

Als sich vor knapp zwei Jahren die Strompreise nach dem Gaspreis-Schock wieder erholten, konnte man mit dynamischen Tarifen erstmals profitieren. Dafür war man aber auch ggfs. wie ich vorne mit dabei, als Ende 2021 der Gaspreis in Form der Gas-Mangel-Lage als dunkler Vorbote in die Höhe schoss. Da dynamische Tarife meist mit sehr kurzen Kündigungsfristen einhergehen, konnte man durch den Wechsel in einen Fix-Tarif einiges an Geld sparen. Deshalb sollte man sich des Risikos bewusst sein und sich nicht scheuen, zu handeln. Deutlich kleiner ist das Risiko durch einzelne Ausreißer. So gab es vereinzelt kWh-Preise im Euro-Bereich für einzelne Stunden (z. B. am 25. Juni 2024 durch eine technische Störung an der Strombörse). Da in dieser Zeit aber der Bezug minimiert ist, wird sich das übers Jahr gesehen kaum auswirken.

Fazit

Wie bei jeder neuen Technik gibt es einiges für und wider zu beachten. Liegt der Fokus auf der Rentabilität, sollte man sich gut überlegen, ob es das Risiko wert ist und ob die Einsparungen die ggfs. anfallenden Zusatzkosten kompensieren können. Stimmen die Voraussetzungen, sind Erfolge durchaus erzielbar, gerade wenn man das Thema als Herausforderung zum Voranbringen der Energiewende sieht. Überschwängliche Werbeversprechen diverser Anbieter sind aus meiner Sicht mit Vorsicht zu genießen. Wer bei bereits hoher Autarkiequote hofft, mit dynamischen Tarifen die Kosten für den Restbezug auch noch drastisch zu senken oder Strom zum absoluten Nulltarif erwartet, läuft große Gefahr, enttäuscht zu werden.

Andreas Ampferl SFV-Mitglied seit 2017, nutzt seit 2021 einen dynamischen Stromtarif für sein Eigenheim.

Quellen & Infos:

www.sfv.de/berichtdynamische-stromtarife

5 Fragen zu Energie-Managementsystemen

Text — Taalke Wolf

Mit steigender Zahl der im Haushalt eingebundenen Energieerzeuger- und Verbraucher oder der Nutzung dynamischer Stromtarife steigt auch das Interesse an Energiemanagementlösungen, die zu einer smarten Vernetzung der unterschiedlichen Geräte und einem kostenoptimierten Betrieb beitragen können. Eine wachsende Zahl an Herstellern bietet dabei unterschiedliche Lösungen an. Wir geben einen Überblick, worin sich die verschiedenen Systeme unterscheiden und wie Sie einen passenden Anbieter finden können. Achtung, es wird komplex!

• Was ist ein Energiemanagementsystem (EMS)?

Ein Energiemanagementsystem (EMS), oder auch Home Energy Management System (HEMS) genannt, verknüpft und steuert die unterschiedlichen Stromverbraucher und -erzeuger eines Haushaltes. Häufig wird ein EMS eingesetzt, wenn der Strom der PV-Anlage bestmöglich in die Wärmepumpe und das Elektroauto fließen soll, um somit den Eigenverbrauch zu erhöhen. Das EMS ist die Kommunikationsschnittstelle zwischen den Geräten, mit der geregelt wird, welche Leistung in welchen Verbraucher fließt. Einige EMS können auch dynamische Stromtarife oder weitere Haushaltsgeräte (z. B. Waschmaschine) einbinden. Viele Speicher können auch ohne separates EMS betrieben werden, jedoch ist auch hier eine Schnittstelle zum Zähler notwendig. Sollen weitere Komponenten eingebunden werden, bringen die unterschiedlichen Systeme jeweils ihre eigenen Vorteile mit sich. Insbesondere für PV-Anlagenbesitzer:innen können EMS seit Inkrafttreten des Solarspitzengesetzes am 25. Februar 2025 wichtiger werden. Dieses sieht für Neuanlagen ohne intelligentes Messsystem vorübergehend eine Leistungsbegrenzung auf 60% der Einspeiseleistung sowie für Neuanlagen mit intelligentem Messsystem eine Aussetzung der Einspeisevergütung in Zeiträumen negativer Strompreise vor. Ein EMS kann dabei helfen, den Eigenverbrauch optimal zu regulieren, sodass nur möglichst geringe Strommengen von der Leistungsbegrenzung oder der Nullvergütung betroffen sind.

Abb 1 — Wie können Stromverbraucher bestmöglich mit der Produktion erneuerbarer Energien verknüpft werden? © 4th Life Photography | Adobe Stock

2 Wie wähle ich das richtige EMS aus?

Der Großteil der Energiemanagementsysteme kommt als separater Controller vor Ort zum Einsatz. Es gibt jedoch auch Cloud-basierte Systeme oder solche, die bereits herstellerabhängig im Batteriespeicher oder der Wallbox integriert sind. Wichtig bei der Auswahl eines EMS ist, dass es zu den Geräten passt, die gesteuert werden sollen. Entscheidend sind dabei die unterstützten Kommunikationsprotokolle und ob das EMS die nötigen Zugriffs- und Schreibrechte für die einzelnen Komponenten hat. Es gibt eine Vielzahl an Protokollen, die sich je nach Gerät und Steuerungseinheit unterscheiden. Eine Standardisierung ist aktuell leider noch nicht absehbar, folgende Protokolle finden aktuell am häufigsten Einsatz:

- SG Ready ist ein recht weit verbreitetes Kommunikationsprotokoll, welches insbesondere zur Wärmepumpensteuerung eingesetzt wird. Es bietet eine "harte" Steuerung über Ein/Aus Befehle, eine stufenlose Leistungsvorgabe ist in der Regel nicht möglich.
- Modbus TCP und Modbus RTU wird insbesondere bei der Steuerung von Batteriespeichersystemen oder Wallboxen mit einem EMS genutzt.
- EE-Bus ermöglicht eine stufenlose Steuerung der Geräte. Es wird deshalb auch vom Forum Netztechnik/Netzbetrieb im Verband der Elektrotechnik, Elektronik und Informationstechnik (VDE) als empfohlene Standardisierung zur netzdienlichen Steuerung und Umsetzung des §14a Energiewirtschaftsgesetz (EnWG) bevorzugt. Der hohe Aufwand für die Einführung ist für viele Hersteller jedoch ein Hindernis, deshalb ist die Umsetzung noch nicht in allen EMS und den zu steuernden Geräten möglich.

3 Kann man verschiedene Hersteller kombinieren?

Grundsätzlich ist das möglich und auch der Anspruch an ein Energiemanagementsystem. Viele EMS können herstellerunabhängig mit Geräten kommunizieren. Wichtig ist, dass die jeweiligen Komponenten über passende Kommunikationsschnittstellen verfügen (siehe oben). Jedoch stellen unterschiedliche Optimierungsziele auch unterschiedliche Anforderungen an die Geräte. Ein konkretes Beispiel: Ein Netzladen des Stromspeichers mit Hilfe von dynamischen Stromtarifen ist nur möglich, wenn der Speicher nicht nur Lese- sondern auch Schreibrechte zur Änderung der Lade- und Entladeleistung zulässt. Während beinahe alle Stromspeicher das Auslesen der Systemdaten zulassen, sind die Schreibrechte je nach Hersteller teilweise begrenzt. Außerdem sind komplexe, messtechnischePflichten einzuhalten. Sprechen Sie deshalb den Fachbetrieb an oder schauen in den Datenblättern oder der Betriebsanleitung nach. Ein Blick in den PV-Magazine-Artikel und den HEMS-Finder ist ebenfalls hilfreich (siehe QR-Code).

4 Ist ein EMS einfach nachzurüsten?

Nur selten wird eine Installation als "Komplettpaket" aus Solaranlage, Batteriespeicher, Wärmepumpe und Wallbox in einem Schritt vorgenommen. Häufiger werden die Komponenten Schritt für Schritt ergänzt. Dies ist in der Regel auch für ein EMS möglich, insofern die Komponenten aufeinander abgestimmt sind. Jedoch unterstützen nicht alle älteren Geräte die jeweiligen Kommunikationsschnittstellen. Ältere Wärmepumpen lassen sich oftmals nur über die SG-Ready Schnittstelle einbinden, jedoch nicht stufenlos regeln. Auch ältere Wallboxen verfügen häufig über keine geeigneten Schnittstellen zur externen Ansteuerung, sodass ggf. eine Erneuerung der Wallbox zur Einbindung ins smarte Haussystem notwendig wird. Weitere Haushaltsgeräte können oftmals über steuerbare Steckdosen oder smarte Schaltrelais auch nachträglich in das HEMS eingebunden werden.

Was kostet ein passendes EMS?

Wir empfehlen, sich zunächst darüber klar zu werden, welches Ziel Sie mit der Einbindung eines EMS verfolgen. Geht es beispielsweise um das PV-optimierte Laden des Batteriespeichers, ist oftmals gar kein zusätzliches EMS notwendig, da entsprechende Ladestrategien bereits in dem Batteriespeicher verbaut sind. Sollen hingegen mehrere Systeme miteinander vernetzt und ggf. sogar die Optimierung eines dynamischen Stromtarifs mit verfolgt werden, stellt dies je nach Hersteller und verwendeter Kommunikationsprotokolle unterschiedliche Anforderungen an das Managementsystem. Vergleichen Sie deshalb die Möglichkeiten unterschiedlicher Anbieter. Die Kosten unterscheiden sich je nach Anbieter und System: Die günstigsten Geräte sind zwar in der Anschaffung kostenlos, verlangen aber jährliche Gebühren von bis zu 100€, die sich im Laufe der Lebenszeit aufsummieren. Andere Systeme kommen mit einmaligen Anschaffungskosten von 250 bis 1000€ einher. In beiden Fällen müssen jedoch die Installations- und Einbindungskosten noch zusätzlich mitbetrachtet werden.

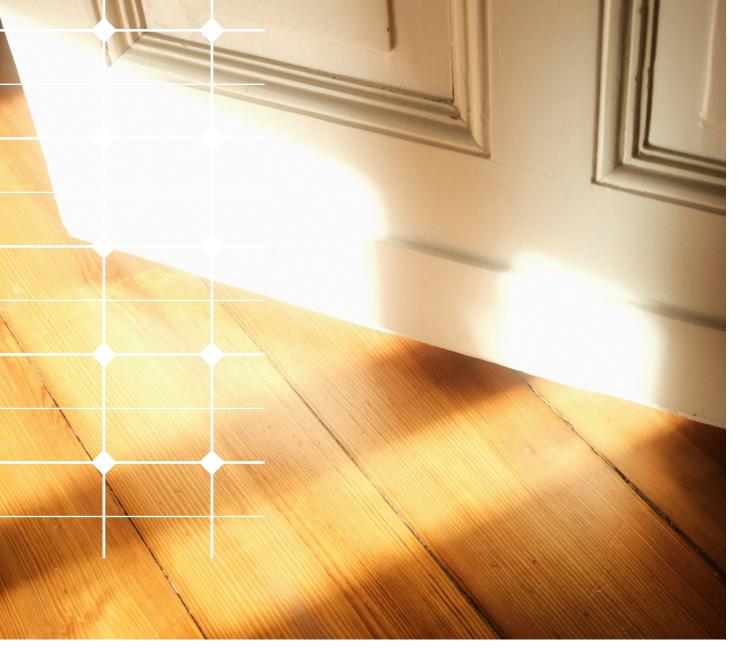


Foto — Julian Rosner / Unsplash

Sonne in der Wohnung einfangen – Updates zu Balkonspeichern und wann sie sinnvoll sind:

Unser letzter Artikel über Balkonspeicher liegt bereits über zwei Jahre zurück. In diesem haben wir uns kritisch mit den Geräten auseinandergesetzt und einige Nachteile aufgezeigt. In der Zwischenzeit hat sich in der Welt der Balkonspeicher einiges getan – die Preise sind stark gesunken, und auch die Technik hat sich weiterentwickelt. Höchste Zeit, darüber zu berichten und ein Update zu liefern. Gleichzeitig klären wir, wann ein Speicher wirklich Sinn ergibt, denn nicht jede Mini-PV profitiert wirtschaftlich im gleichen Maß von einem Akku. Nachfolgend wird vereinfacht vom "Balkonspeicher" gesprochen – das Gerät kann jedoch auch an anderen Orten aufgestellt werden.

Beratung • 59

Was gilt aktuell für Balkonkraftwerke und Balkonspeicher?

Im EEG und in DIN-Normen werden Balkonkraftwerke als "Steckersolargeräte" bezeichnet. Die PV-Modulleistung ist auf maximal 2000 Watt begrenzt. Sie wird auch als *Peak-*, *Gleichstrom-* oder *DC-Leistung* bezeichnet. Gemeint ist die Summe der Maximalleistung aller PV-Module – das könnten beispielsweise vier PV-Module mit jeweils 500 Watt (peak) sein. Auch die Wechselstromleistung ist begrenzt auf 800 Watt bzw. *Voltampere (VA).* Sie wird auch als *AC-Leistung* bezeichnet – also das, was in der Steckdose des Haushalts ankommt und nutzbar ist. Die gleichen Regeln gelten, wenn das Balkonkraftwerk um einen Speicher ergänzt wird: Max. 2000 Watt (DC) und maximal 800 Watt (AC). Balkonkraftwerke und Speicher müssen im Marktstammdatenregister angemeldet werden.

<u>Beispiel:</u> Erzeugen die PV-Module 1200 Watt (DC), begrenzt der Wechselrichter die Leistung auf 800 Watt (AC). Liegt der Haushaltsverbrauch bei 300 Watt, würden 500 Watt Überschuss ohne Speicher ins öffentliche Netz fließen – ohne Vergütung. Ein Speicher fängt diese Überschüsse ab und stellt sie später bereit.

Wann lohnt sich ein Balkonspeicher? Zwei wichtige Punkte für einen sinnvollen und rentablen Betrieb:

1. Ausreichender PV-Überschuss!

Mit nur zwei PV-Modulen (ca. 900 Watt) fällt, je nach Standort, Ausrichtung und Tagesprofil, oft zu wenig speicherbarer Überschuss an, besonders im Winter. Praktische Erfahrungen zeigen, dass ein Batteriespeicher in der Regel erst ab 3–4 PV-Modulen (1500–2000 Watt) wirklich sinnvoll und – je nach Preis – rentabel sein kann. Damit steigt die Chance, den Speicher regelmäßig zu füllen und den Eigenverbrauch signifikant zu erhöhen. Sollten Sie also Platz für nur zwei PV-Module haben, können Sie auf den Speicher und die Extrakosten verzichten.

2. Messung & Steuerung ist Pflichtprogramm!

Die ersten Balkonspeicher vor einigen Jahren wurden oft noch ohne Messgeräte verkauft. Aber ohne eine Live-Messung am Hausanschlusspunkt kann der Speicher nicht bedarfsgerecht geladen und entladen werden. Ein sogenanntes *Energy-Meter* meldet Netzbezug und PV-Überschuss – der Speicher wird dann entsprechend gesteuert. Die Geräte gibt es oft vom Speicherhersteller, aber es gibt auch Drittanbieterlösungen wie z. B. von *Shelly 3EM*, *Ecotracker*, *IOMeter* oder *Consolino*, die über Schnittstellen (z. B. via WLAN) kompatibel zu verschiedenen Speichern sein können. Wichtig ist hier, die Kompatibilität vor dem Kauf genau zu prüfen.

Das Energy-Meter muss in der Hauptverteilung eingebaut werden. Die Hauptverteilung ist der zentrale Kasten, in dem der Strom in das ganze Gebäude verteilt wird. Viele Geräte messen den Strom mit CT-Klemmen, die um die drei Hauptleitungen gelegt werden. Dabei wird der Stromfluss über Induktion gemessen. Das bedeutet, dass das Gerät den Strom erkennt, ohne direkt mit ihm in Berührung zu kommen, ähnlich wie ein Magnet, der Strom in einer Leitung "spürt". Für die Installation ist elektrotechnische Fachkenntnis notwendig – beauftragen Sie im Zweifel lieber eine Fachkraft! Ohne ein solches Energy-Meter kann der

Speicher in der Regel nicht sinnvoll gesteuert werden und arbeitet stattdessen oft mit fest eingestellten Lastprofilen oder Schwellwerten. Das kann zur Folge haben, dass Strom in den Speicher fließt, obwohl der Haushalt genug Bedarf hätte. Oder umgekehrt, dass Strom unnötig ins öffentliche Netz abgegeben wird.

Ohne ein Energy-Meter kann der Speicher in der Regel nicht sinnvoll gesteuert werden und arbeitet stattdessen oft mit fest eingestellten Lastprofilen oder Schwellwerten. Bei der Installation sind Fachkenntnisse erforderlich!

Welche Arten von Balkonspeichern gibt es?

Der Markt für Balkonspeicher ist in den letzten Jahren enorm gewachsen und bietet mittlerweile eine Vielzahl unterschiedlicher Konzepte, die sich in Funktionsweise, Ausstattung und Leistung unterscheiden. Je nach Ausgangssituation – beispielsweise, ob schon ein Balkonkraftwerk vorhanden ist oder nicht – kann ein Speichersystem mehr Sinn ergeben als ein anderes. Die genannten Produkte sind nur einige ausgewählte Beispiele, es gibt eine Vielzahl von Herstellern am Markt.

1. Speicher mit integriertem Balkonkraftwerk-Wechselrichter

Diese Geräte vereinen Speicher und Wechselrichter in einem Gehäuse und werden deshalb auch oft als *All-in-One-System* bezeichnet. Die Solarmodule werden direkt an den Speicher angeschlossen, der den DC-Strom sowohl speichert als auch bei Bedarf umwandelt und in das Hausnetz einspeist. Dies vereinfacht die Installation und sorgt oft für eine höhere Effizienz, da weniger Umwandlungsschritte notwendig sind. Solche Systeme eignen sich besonders bei der Neuanschaffung eines Balkonkraftwerks. Beispiele für All-in-One-Systeme sind *Anker SOLIX Solarbank 3*, *Zendure Solarflow 800, FoxEss Avocado 22*.

2. (DC-/AC-) Speicher ohne eigenen PV-Wechselrichter

DC-Speicher werden zwischen Solarmodule und Modulwechselrichter angeschlossen. Sie speichern den Gleichstrom (DC) direkt von den Modulen, bevor er zum Wechselrichter geleitet und in Wechselstrom (AC) umgewandelt wird. Dies ist eine günstige Methode zur Nachrüstung eines bereits vorhandenen Balkonkraftwerks. Beispiele für DC-Speicher sind *Marstek Saturn B2500* oder *Growatt NOAH 2000*.

AC-Speicher sind in zwei Ausführungen erhältlich: Entweder werden sie AC-seitig zwischen den Modul-Wechselrichter und die Steckdose geschaltet, oder sie werden unabhängig vom Balkonkraftwerk direkt in eine beliebige Schuko-Steckdose eingesteckt. Die 60 Beratung

Schuko-Geräte sind sehr flexibel und einfach zu installieren, da sie an jede Steckdose angeschlossen werden können, unabhängig davon, wo das Balkonkraftwerk steht. Batteriezellen arbeiten mit Gleichstrom – die Geräte haben also durch die mehrfache Umwandlung von DC zu AC und zurück etwas höhere Verluste. Hierzu zählen beispielsweise der *Hoymiles MS-A2* und der *Ecoflow Stream AC*.

3. Speicher mit eingebauten Steckdosen und höherer Leistung

Einige der *All-in-One-Systeme* und *AC-Speicher* bieten eine oder mehrere integrierte Schuko-Steckdosen oder USB-Ladeanschlüsse. Die Entnahmeleistung an diesen Steckdosen kann teilweise sogar höher sein als die reguläre Einspeiseleistung von 800 Watt. Auch bei einem Stromausfall kann an diesen integrierten Steckdosen Strom entnommen werden, sofern Ladung und Leistung des Speichers ausreichen.

4. Kaskadierbar Speicher, die sich koppeln lassen

Einige Speicher sind modular aufgebaut. Das bedeutet, man kann mit einer Basiseinheit starten und bei Bedarf weitere Akku-Module hinzufügen. Somit kann die Gesamtkapazität gesteigert werden oder auch die Entnahmeleistung aus den Speichern weiter erhöht werden. AC-geführte Speichersysteme können an mehreren Orten im Haushalt aufgestellt werden, an denen höhere Entnahmeleistungen benötigt werden. Bei allen Geräten wird dringend empfohlen, einen Energy-Meter zu installieren, damit die Ladung und Entladung des Speichers passend zum Verbrauch gesteuert werden kann.

Worauf ist beim Kauf eines Balkonspeichers zu achten?

Kosten: Einfache DC-Balkonspeicher mit 2 kWh gibt es für ca. 400 – 500 Euro. *All-in-One-Gerät*e sind je nach Ausstattung und Leistung teurer. (Stand Oktober 2025)

<u>Nutzbare Speicherkapazität:</u> Balkonspeicher haben üblicherweise eine Kapazität von 1–2,5 kWh. Eine größere Speicherkapazität ist bei einem Balkonkraftwerk mit maximal 2000 Watt meistens nicht erforderlich. Die Hinweise zur Speicherdimensionierung in unserem Basis-Artikel können auch bei Balkonspeichern angewendet werden.

Ein- und Ausgangsleistung: Die maximale Eingangsleistung (in Watt) gibt an, wie viel PV-Leistung angeschlossen werden darf. Bei Balkonkraftwerken sind maximal 2000 W erlaubt. Die Ausgangsoder Entladeleistung bestimmt, wie viel Strom gleichzeitig ins Hausnetz eingespeist oder von Geräten genutzt werden kann. Entlädt der Speicher ins Hausnetz, sind bei Balkonkraftwerken maximal 800 Watt erlaubt. Werden Verbraucher direkt an die integrierten Steckdosen des Speichers angeschlossen, sind oft höhere Entnahmeleistungen möglich.

Intelligente Steuerung: Bietet der Speicher eine App-Steuerung? Unterstützt er die dynamische Ladung/Entladung mittels Energy-Meter? Gibt es intelligente Lade-Modi, eventuell sogar eine Optimierung anhand von Wetterdaten oder dynamischen Stromtarifen?

Notstromfunktion: Ist eine Notstromversorgung bei Stromausfall für Sie wichtig? Prüfen Sie, ob der Speicher diese Funktion bietet und welche Leistung an den Notstrom-Steckdosen zur Verfügung steht.

Den gesamten Haushalt kann ein Balkonspeicher nicht versorgen. Stromintensive Verbraucher sollten Sie deshalb nicht anschließen.

Wintertauglichkeit: Wird der Speicher im Freien aufgestellt, ist eine integrierte Heizfunktion wichtig. Diese stellt sicher, dass der Akku auch bei Minusgraden geladen werden kann und verlängert die Lebensdauer enorm. Wenn möglich, sollten die Speicher grundsätzlich drinnen aufgestellt werden, damit die Akkuzellen vor zu hohen und zu niedrigen Temperaturen geschützt bleiben. Das verlängert die Lebensdauer der Batterie.

<u>Anmeldung des Balkonspeichers:</u> Wenn ein Balkonspeicher ins Hausnetz entladen kann (max. 800 Watt), dann muss dieser – genauso wie das Balkonkraftwerk – im Marktstammdatenregister registriert werden.

Fazit:

Balkonspeicher sind günstiger und raffinierter geworden. Systeme mit Energy-Meter ermöglichen eine intelligente Steuerung, die den Eigenverbrauch maximiert, indem sie Ladevorgänge optimal auf den tatsächlichen Haushaltsverbrauch abstimmt. Allerdings gilt nach wie vor: Ein Speicher ist keine pauschale Empfehlung. Er ist erst dann wirtschaftlich sinnvoll und rentabel, wenn ein entsprechend großes Balkonkraftwerk einen ausreichenden PV-Überschuss generiert. Balkonspeicher sind eine sinnvolle Ergänzung für Mini-PV-Anlagen, ersetzen aber keine vollwertige PV-Anlage. Wer die Möglichkeit hat, eine große PV-Anlage auf dem Dach zu installieren, profitiert in der Regel von deutlich höheren Erträgen.

Es gibt einige Technik-Journale, die aktuelle Balkonspeicher genauer beleuchten und testen – beispielsweise bei: Heise Online, Home & Smart, Energiemagazin oder Computer BILD.

Günstige Balkonkraftwerk- und Speicher-Angebote findet man oft in der Mydealz-Community:

Unser Steckersolar-Infobereich auf der SFV-Webseite verschafft eine Allgemeinübersicht rund um das Thema und versorgt Sie mit Basic Infos:

Quellen&Infos www.sfv.de/wann-lohntbalkonspeicher

Aktuelles

– Erinnerung an Petra Hörstmann-Jungemann

Wir trauern um unsere geschätzte ehemalige Mitarbeiterin, die 18 Jahre lang mit Herz und Engagement für unseren Verein tätig war. Viele unserer älteren Mitglieder erinnern sich an sie als eine sorgsame, wertschätzende und stets hilfsbereite Person, die sich besonders um die Mitgliederbetreuung und die Solarberatung gekümmert hat. Vor fünf Jahren schied sie aus dem Hauptamt aus und ist nun nach langer, schwerer Krankheit von uns gegangen. Wir werden sie in liebevoller Erinnerung behalten.

Beratende Vorträge für die Energiewende vor Ort

Seit einiger Zeit bietet der SFV eine eigene Vortragsreihe an – entwickelt für Kommunen und Organisationen. In rund 90 Minuten geben wir kompakte Infos zu PV auf Ein- und Mehrfamilienhäusern, Ü20-Anlagen, Steckersolar, Energy Sharing und Wirtschaftlichkeit – jeweils mit Fragerunde. Mehrere Kommunen haben das Angebot bereits genutzt – teils auch durch Hinweise unserer Mitglieder. Tragen Sie es gern weiter, damit noch mehr Kommunen die Energiewende vor Ort voranbringen.

- Karikaturen-Kalender 2026

Gerhard Mesters Karikaturen begleiten uns auch 2026 mit Humor durch die Klimakrise. Wir haben wieder zwölf seiner besten Zeichnungen in unserem Kalender gesammelt. Der SFV-Kalender für 2026 kann ab sofort bestellt werden Als Einzelexemplar für Zuhause und auch in größerer Auflage z.B. als Firmengeschenk zu Weihnachten. Die Zustellung ist für die erste Dezemberwoche geplant. www.sfv.de/medien/sfv-karikaturen-kalender

2959 ↑ Persönliche Mitglieder

327↑ Fördermitglieder

16.281 ↓

Newsletter-Empfänger:innen A

29.11. - 30.11. | Solar-Tagung

Stromspeicher smart nutzen – Wie du Geld sparst und das Netz stärkst!

Wie lassen sich Stromspeicher zuhause clever einsetzen – um Solarstrom besser zu nutzen, Kosten zu senken, die Unabhängigkeit zu erhöhen und gleichzeitig das Stromnetz zu entlasten?

In Aachen oder online
Bequem per Zoom oder gemeinsam
vor Ort. Übernachtung möglich.

Kleines Geld
Praxisnahes Fachwissen für nur
37,90 € vor Ort (inkl. Verpflegung)
oder 21 € online.

Programm aut

Programm: Beispielvorträge

29. Nov | 15.15 – 16.15 Uhr Dein Heimspeicher kann mehr!

Was können Heimspeicher heute schon leisten? Wie steigern sie die Wirtschaftlichkeit von Solaranlagen? Wie können sie das Stromnetz entlasten?

Dr. Johannes Weniger— HTW Berlin

30. Nov | 09.45-10.30 Uhr Elektroauto als Heimspeicher

Wie kann ein Elektroauto als Stromspeicher genutzt werden? Warum hinkt die Automobilbranche hinterher? Und was ist der aktuelle Stand der Diskussion?

Prof. Dr. Ingo Stadler — TH Köln

30. Nov | 11.00 – 11.45 Dynamische Strom preise im eigenen Haus

Wie lässt sich mit dynamischen Stromtarifen sparen – u. a. mit Wallbox und Wärmepumpe? Was ist heute schon möglich? Wie funktionieren dynamische Einspeisevergütungen?

Dr. Peter Klafka

— Energieexperte,
Scientists for Future
(Ortsgrupp Aachen)

SFV-Mitgliederversammlung 2025

29

Die Mitgliederversammlung findet, wie letztes Jahr, nach einem entspannten Abendessen direkt im Anschluss an den ersten Tagungstag am 29. 11.2025 statt. Die Teilnahme ist in Aachen oder per Zoom möglich. Dieses Jahr gibt es außerdem die Möglichkeit, dem Aachener Weihnachtsmarkt vor Abreise noch gemeinsam einen Besuch abzustatten.

Infos, Programm und Anmeldung: www.sfv.de/solartagung

Neues von den Infostellen

Infostelle: Lüneburg

Solarbotschafter bei der Vorstellung der kommunalen Wärmeplanung

• Mehr als 100 Personen kamen im Mai zur Vorstellung der kommunalen Wärmeplanung der Hansestadt Lüneburg ins Auditorium der Musikschule. Auch wir Solarbotschafter:innen waren mit einem Infostand dabei und beantworteten viele Fragen rund um Photovoltaik und Wärmepumpen wie immer aus der Praxis für die Praxis. Besonders groß war das Interesse an Lösungen für den Altbau. Wir freuen uns über den spannenden Austausch und das stetig wachsende Interesse an der lokalen Energiewende! Übrigens: Um in Lüneburg eine lokale packsdrauf-Community aufzubauen

rufen wir unseren eigenen Instgram-Account ins Leben – folgt rein: packsdrauf.lueneburg

Infostelle: Köln

Solarcamp geht in die zweite Runde!

• Im Sommer 2025 fand in Köln bereits das zweite Solarcamp statt – dieses Mal organisiert von den Klimafreunden Rhein-Berg, mit Unterstützung der SFV-Infostelle Köln. Im August 2025 wurde eine Woche lang auf einem Pfadfindergelände in Köln-Dellbrück gesägt, gebohrt und geschraubt, um einen eigens aufgebauten Dachstuhl mit Solarmodulen zu belegen und die Elektrik zu installieren. Die 15 Teilnehmer:innen konnten in diesem Sommercamp lernen, wie mit Spaß und Teamarbeit die Energiewende gelingt. Für die zweite Woche organisierten die Ehrenamtlichen Praktikumsplätze in Solarhandwerksbetrieben – so entstand eine berufliche Orientierung und ein umfassender Einblick in das Solarhandwerk für unsere Fachkräfte von morgen.

Abb 1 — Am Übungsdach erlernen junge Menschen die Grundlagen des Solarhandwerks. •

Infostelle: Ost-Münsterland

Radtour, Vorträge und Solarparty

• Die SFV-Infostelle Ost-Münsterland organisierte für diesen Sommer mehrere Formate, um die Energiewende vor Ort sowohl für die Aktiven der Infostelle als auch für weitere Energiewende-Interessierte erlebbar zu machen. Bei einer Radtour wurde der Solarpark "In der Hoest" mit 10,7 MWp und 16.500 Modulen sowie die im Bau befindlichen Bürgerwindanlagen Ennigerloh besucht. Vorträge erklärten Elektromobilität, räumten Mythen über E-Autos aus und zeigten Risiken durch Abhängigkeiten von US-Softwarekonzernen auf, inklusive alternativer Open-Source-Lösungen. Bei einer Solarparty in Beckum gab Anne Bussmann Einblicke in ihre Anlagen und beantwortete zusammen mit Solarbotschafter Jörg Lambke Fragen zu Technik, Förderung und Praxis.

Abb 2 — Die SFV-Infostelle Ost-Münsterland radelte durch die Region und erhielt spannende Einblicke in verschiedene Windkraft-Projekte. • Foto: Anne Bussmann

Verein • 65

Infostände, V2X-Austausch und Intersolar

• Die SFV-Infostelle Nordbayern zeigte in den letzten Monaten, wie vielfältig Engagement aussehen kann. Mit Infoständen beim E-Bike-Testsonntag in Stadtbergen, beim Nachhaltigkeitsfest in Gersthofen, der Gewerbeschau in Wemding und beim Jubiläum der Helmut Kampmann GmbH in Crailsheim wurden viele Interessierte erreicht. Tiefer in die Technik ging es beim *eMoDoRi-Stammtisch* im Juni zum Thema V2X und bidirektionales Laden. Ein besonderes Highlight war die Intersolar 2025 in München, wo Nordbayern-Mitglieder am SFV-Stand mit anpackten.

Abb 3 — Ein großes Dankeschön an alle Helfenden – wer Lust hat, sich einzubringen, findet die nächsten Termine auf *www.sfv-nordbayern.de* • Foto: Thomas Biber

Infostelle: Amberg

Demo-Solaranlage und Grundschul-Lernbox

• Gemeinsam mit der Wirtschaftsförderung Amberg und den Maltesern hat die Infostelle eine Fassaden-Demoanlage an der Tafel Amberg realisiert. Direkt an einer stark befahrenen Ausfallstraße erzeugte sie bereits in den ersten 20 Tagen rund 40 kWh Strom und macht die Möglichkeiten der Solarenergie unmittelbar sichtbar. Auch in Sachen "Klimabildung" ging es weiter: Bei einem "solaren Kaffeekränzchen" stellten Hans-Jürgen Frey (SFV Amberg) und Martin Kopp (ZEN Ensdorf) interessierten Lehrkräften die ausleihbare Grundschulbox vor. Sie eröffnet Kindern einen spielerischen Energie-Parcours rund um Erneuerbare Energien. Ein herzliches Dankeschön an alle Mitwirkenden.

Abb 4 — Die Barbara-Grundschule in Amberg durfte als erstes die solaren Grundschulboxen testen. \bullet Foto: Hans-Jürgen Frey

Infostellen des SFV

Infos zu unseren Infostellen findet ihr unter den jeweiligen Internetseiten und unter www.sfv.de/verein/infostellen

Amberg / Amberg-Sulzbach

Kontakt: Corinna Löwert, Lorenz Hirsch, Reichstr. 11, 92224 Amberg • Tel.: 09621 320057, Fax.: 09621 33193, @: info@solarverein-amberg.de, www.solarverein-amberg.de

Köln

Kontakt: Ronald Biallas und Stefanie Könen, im Fotostudio Ronald Biallas, Wartburgstraße 11, 50733 Köln • @: ronald@solar11.de, www.sfv.de/verein/infostellen/koeln

Koblenz

Kontakt: Thomas Bernhard, Joachim Deboeser, SFV-Infostelle im BUND-Büro, Dreikönigenhaus, Kornpfortstr. 15, 56068 Koblenz • Tel.: 0261 9734539, @: info@sfv-infostelle-koblenz.de, www.sfv-infostelle-koblenz.de

Lüneburg

Kontakt: Karsten Riggert, Norbert Krause, Im Häcklinger Dorfe 1c, 21335 Lüneburg • Tel.: 04131 48272 oder 04131 62330, @: infostelle-lueneburg@sfv.de

Ost-Münsterland

Kontakt: Anne Bussmann, Heinz-Jürgen Goldkuhle, Elisabeth-Wibbelt-Str. 1, 59269 Beckum • Tel.: 02521 826397, @: annegret_bussmann@web.de

Nordbayern

Kontakt: Herwig Hufnagel & Andreas Ampferl, Am Steinbruch 2, 86697 Unterhausen • Tel.: 08431 45990, @: info@sfv-nordbayern.de, www.sfv-nordbayern.de

Übersicht: Aktuelles beim SFV

Bestellung • Karikaturenkalender 2026

Gerhard Mesters Karikaturen begleiten uns auch 2026 mit Humor durch die Klimakrise. Wir haben wieder zwölf seiner besten Zeichnungen in unserem Kalender gesammelt. Der SFV-Kalender für 2026 kann ab sofort bestellt werden. Als Einzelexemplar für Zuhause und auch in größerer Auflage z. B. als Firmengeschenk zu Weihnachten. Die Zustellung ist für die erste Dezemberwoche geplant.

NOV

Deadline für Zustellung 1. Dezemberwoche: 18. November

18 Alle Infos: www.sfv.de/kalender

OKT 13:30 Uhr

20 Gruppen-Beratung: Solaranlagen Online-Vortrag, SFV-Beratungsteam

OKT 18:00 Uhr

21 Gruppen-Beratung: Mehrfamilienhäuser Online-Vortrag, SFV-Beratungsteam

OKT 18:00 Uhr

PV auf MFH – Betriebskonzepte
Online-Vortrag, SFV-Beratungsteam

OKT 18:00 Uhr

NOV 18:0 Uhr • Aachen

O3 Stromnetz für die Energiewende Präsenz-Vortrag, Prof. Dr. Eberhard Waffenschmidt

NOV 18:00 Uhr • Aachen

O6 PV auf Mehrfamilienhäusern – GGV Online-Vortrag, SFV-Beratungsteam

NOV Ganztägig • Aachen & Zoom

29 Solar-Tagung: Speicher smart nutzen Hybrid-Vortrag, Gastreferent:innen

ab 19:00 Uhr • Aachen & Zoom
Mitgliederversammlung

Hybrid-Veranstaltung, Gastreferent:innen

NOV Ganztägig • Aachen & Zoom

30 Solar-Tagung: Speicher smart nutzen

Hybrid-Vortrag, Gastreferent:innen

DEZ 18:00 Uhr • Aachen

PV und DenkmalschutzPräsenz-Vortrag, Susanne Jung

DEZ 18:00 Uhr

04 **packsdrauf**-Solar-Botschafter:in werden Online-Vortrag, SFV-Team

JAN 18:00 Uhr • Aachen

Wie erkenne ich ein gutes Angebot?
Präsenz-Vortrag, Stefanie Könen

FEB 18:00 Uhr • Aachen

O4 Energie Sharing – Strom in der Nachbarschaft teilen Präsenz-Vortrag, Tobias Otto

FEB 18:00 Uhr • Aachen

Wirtschaftlichkeit von PV-Projekten Präsenz-Vortrag, Susanne Jung

Alle Termine und Anmeldung online: www.sfv.de/termine Verein •

Ausblick Solarbrief 03/2025

Schwerpunkt: Ü20 Anlagen

Für viele Solaranlagen endet nach 20 Jahren die feste EEG-Vergütung, doch das muss nicht das Ende bedeuten. Sie sind wertvolle Pioniere der Energiewende, die noch lange nicht in Rente gehen müssen. Sie sind technisch oft noch in bestem Zustand und liefern weiterhin zuverlässig Strom. Ob Umstellung auf Eigenverbrauch, Direktvermarktung, Kombination mit Speichern oder Repowering – es gibt viele spannende Wege, wie Betreiber:innen ihre Anlage zukunftsfähig gestalten können. Dabei eröffnen sich nicht nur neue Freiheiten, sondern auch Chancen: günstiger Strom für

den eigenen Bedarf, mehr Unabhängigkeit und ein weiterhin spürbarer Beitrag zum Klimaschutz und zur Nachhaltigkeit. In unserer nächsten Ausgabe werfen wir einen optimistischen Blick auf die Welt der Ü20-Anlagen. Wir stellen einige der ältesten Solaranlagen vor, sprechen mit Expert:innen und klären rechtliche und technische Fragen und zeigen, wie jede einzelne Anlage auch nach dem EEG ein starkes Zeichen setzen kann. Denn: Die Energiewende braucht Erfahrung, Beständigkeit und Mut zum Weitermachen!

Bist du schon Teil der Energiewende?

www.sfv.de/verein/mitglied-werden

Impressum

Solarenergie-Förderverein Deutschland

Bundesgeschäftsstelle: Frère-Roger-Str. 8–10, 52062 Aachen
Tel: 0241/511616 | Fax: -535786 | zentrale@sfv.de | www.sfv.de
Bürozeiten: Mo-Fr 9:00-13.00 Uhr

Solarbrief: Jahresabo 24€, Preis pro Einzelheft 8€

Für Mitglieder ist der Bezug des Solarbriefes im Mitgliedsbeitrag enthalten. Seit 2022 müssen Druckversionen des Solarbriefs explizit angefordert werden. Die PDF-Datei steht auf unserer Homepage kostenfrei zum Download zur Verfügung.

Bankverbindung:

Pax-Bank e.G. IBAN: DE16 3706 0193 1005 4150 19, BIC: GENODED1PAX

SFV-Beiträge von:

Susanne Jung, Stefanie Könen, Taalke Wolf, Tobias Otto, Caroline Kray, Kyra Schäfer, Rüdiger Haude, Oliver Kluth

Externe Beiträge von:

Marcus Fendt, Andreas Ampferl, Jonas Quernheim, Jens Peters, Nils Reiners, Christina Bönning-Huber, Johannes Weniger, Michael Viernickel

Hinweis: Die Beiträge externer Autor:innen entsprechen nicht zwangsläufig der Meinung des SFV.

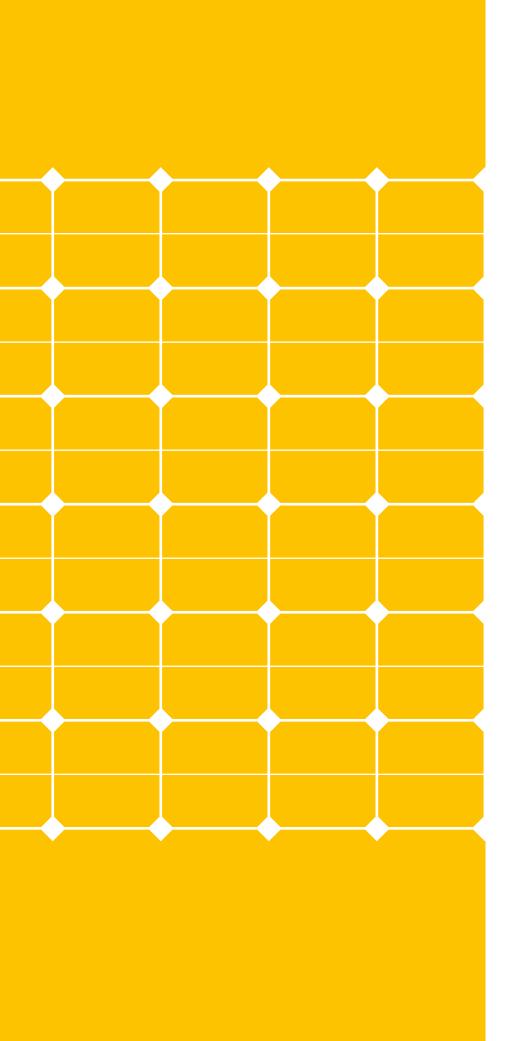
Verantwortlich:

Susanne Jung (V.i.S.d.P.)

Layout:

Leslie David, Kyra Schäfer

Auflage:


Online-Verbreitung als pdf-Datei, Druck: 1200 Exemplare

Erscheinungsdatum:

Oktober 2025, Redaktionsschluss: 29.09.2025

Druckerei:

TheissenKopp GmbH gedruckt auf 100 % Recyclingpapier (Euroblume) ISSN 0946-8684

